Tag Archives: rubber shaft

China Hot selling Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description


Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!

How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;

2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;

3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;

4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.

5. We can arrange a technical communication meeting with you and our engineers together anytime if required.

Place of origin: Jangsu,China
Type: Powder metallurgy sintering
Spare parts type: Powder metallurgy parts
Machinery Test report: Provided
Material: Iron,stainless,steel,copper
Key selling points: Quality assurance
Mould type: Tungsten steel
Material standard: MPIF 35,DIN 3571,JIS Z 2550
Application: Small home appliances,Lockset,Electric tool, automobile,
Brand Name: OEM SERVICE
Plating: Customized
After-sales Service: Online support
Processing: Powder Metallurgr,CNC Machining
Powder Metallurgr: High frequency quenching, oil immersion
Quality Control: 100% inspection

The Advantage of Powder Metallurgy Process

1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .

2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.

3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .

4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .

5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten. 

FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.

Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good. 

Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.

Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.

Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.

Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
    2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible gear coupling

Compensation for Axial, Angular, and Parallel Misalignments with Flexible Gear Couplings

Flexible gear couplings are known for their ability to accommodate various types of misalignments, including axial, angular, and parallel misalignments. Here’s how they compensate for each type:

  • Axial Misalignment: Axial misalignment occurs when the two shafts move closer or farther away from each other along the axis of rotation. Flexible gear couplings can absorb this type of misalignment through their flexible design, allowing the gear teeth to articulate and adjust to the axial movement without transmitting harmful forces to the connected equipment.
  • Angular Misalignment: Angular misalignment occurs when the two shafts are not collinear and form an angle with each other. Flexible gear couplings can accommodate angular misalignment by allowing the gear teeth to articulate and flex as the shafts are angularly displaced. This flexibility ensures that torque transmission remains smooth and minimizes stress on the coupling and connected equipment.
  • Parallel Misalignment: Parallel misalignment happens when the two shafts are offset horizontally while maintaining parallelism. Flexible gear couplings can handle this misalignment by utilizing their flexible elements to adjust to the lateral displacement of the shafts. The ability to compensate for parallel misalignment prevents excessive forces from being transmitted to the machinery, protecting it from damage.

Thanks to their design and material properties, flexible gear couplings provide a reliable solution for compensating for axial, angular, and parallel misalignments, making them suitable for a wide range of applications in various industries.

flexible gear coupling

Comparison of Flexible Gear Couplings with Diaphragm Couplings and Beam Couplings

Flexible gear couplings, diaphragm couplings, and beam couplings are all types of flexible couplings used in mechanical power transmission systems. Each type has its unique characteristics and advantages:

  • Flexible Gear Couplings: These couplings consist of gear teeth that mesh together to transmit torque. They are known for their high torque capacity, ability to accommodate misalignment, and torsional stiffness. Flexible gear couplings are commonly used in heavy machinery, such as industrial conveyors and mining equipment, where high torque and misalignment compensation are required.
  • Diaphragm Couplings: Diaphragm couplings utilize a thin metal diaphragm to transmit torque between the shafts. They are ideal for applications that demand high precision and no backlash. Diaphragm couplings offer excellent torsional rigidity and can handle axial, angular, and parallel misalignments. They are often used in precision machinery, robotics, and medical equipment.
  • Beam Couplings: Beam couplings consist of one or more helical cuts along a cylindrical coupling body. They are known for their flexibility, zero backlash, and compact design. Beam couplings can handle misalignment and are suitable for applications with limited space, such as small motors and positioning systems.

The choice between flexible gear couplings, diaphragm couplings, and beam couplings depends on the specific requirements of the application:

  • Flexible gear couplings are preferred for high-torque and heavy-duty applications with substantial misalignments.
  • Diaphragm couplings excel in applications where precision and backlash-free operation are critical.
  • Beam couplings are suitable for compact systems and applications with limited misalignment.

Each type of coupling has its strengths and limitations, and selecting the most appropriate one depends on factors like torque requirements, misalignment, precision, space constraints, and environmental conditions. Consulting with coupling manufacturers or experts can help in making the right choice for a specific application.

“`flexible gear coupling

Industry Standards and Certifications for Flexible Gear Couplings

Flexible gear couplings are essential components in mechanical power transmission systems, and there are industry standards and certifications that govern their design, manufacturing, and performance. Some of the most commonly recognized standards and certifications for flexible gear couplings include:

  • ISO 9001: This certification ensures that the manufacturer follows a quality management system that meets international standards, ensuring consistent and reliable production of flexible gear couplings.
  • AGMA Standards: The American Gear Manufacturers Association (AGMA) has published various standards related to gear couplings, including AGMA 9002 for flexible couplings, which provides guidelines for design, selection, installation, and lubrication.
  • API Standards: The American Petroleum Institute (API) has established standards for couplings used in the oil and gas industry. API 671 specifically covers the requirements for special-purpose couplings, including gear couplings, used in petroleum, chemical, and gas industry services.
  • CE Marking: The CE marking indicates that the flexible gear coupling complies with the European Union’s health, safety, and environmental protection standards, making it eligible for sale within the EU market.
  • ATEX Certification: If the flexible gear coupling is intended for use in potentially explosive atmospheres, it may require ATEX certification, which ensures compliance with European Union directives for explosive atmosphere protection.

When selecting a flexible gear coupling, it is essential to verify if it conforms to the necessary industry standards and certifications to ensure the coupling’s performance, safety, and reliability in your specific application.

China Hot selling Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China Hot selling Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2024-02-25

China Professional High Abrasion Resistant Flexible Rubber Jaw Shaft Star Coupling Element PU Coupling Spider

Product Description

Rubber Spider Coupling Characteristic: 

1. Performance Shock Absorber
2. Low Compression Deformation
3. Corrosion Resistance
4. Oil Resistance
5. High Pressure Resistance
6. Wear Resistance

Rubber Material Compare

E – Excellent          G – Good          F – Fair          P – Poor          
Material Properties
Property NBR  EPDM CR Silicone FKM NR SBR PU HNBR FVMQ IIR
Abrasion Resistance G G G P G E E E G P G
Acid Resistance F G F F E F F P E F G
Chemical Resistance F E F G E F F F G E E
Cold Resistance G G F E P G G G G G G
Compression Set Resistance G G F G E G G F G G F
Dynamic Properties G G F P G E E E G P F
Electrical Properties F G F E F G G F F E G
Elongation G G G F F F F F G F G
Flame Resistance P P G F E P P P P G P
Heat Resistance G G G E E F F F E E G
Impermeability G G G P G F F G G P E
Oil Resistance E P F F E P P G E G P
Ozone Resistance P E G E E P P E G E G
Tear Resistance F G F P F G G G F P G
Tensile Strength G G G P G E E E E F G
Water Resistance G E F G F G G P E F G
Weather Resistance F E E E E F F E G E G

Why Us:

We have a fully-equipped workshop that meets ISO 9001:2015 and IATF 16949:2016 requirements. All products are compliant
with FDA, WRAS, UL, RoHS and REACH standards, and meet DIN, JIS and ASTM regulations. Material report and dimension
checking report are available.

1. Quality Approvals. More than 15 years professional manufacture experience.
2. Experienced Staff and Service.   Professional R&D team, production team, sales team, after-sales service team.
3. Product Performance and affordable cost.   Superior performance with most competitive price.
4. Prompt Delivery.   Faster delivery time. 
5. Small Orders Accepted.
 

Material Rubber Metal Bonded, NR Rubber, SBR Rubber, Carbon Steel, Stailess Steel
Material Report FDA, ROHS, UL, WRAS and REACH
Dimension Standard Sizes or As per customers’ Requirement
Certifications ISO9001,IATF16949,ISO14001
Color Any colors according to PANTONE or RAL
Surface Finish Texture (VDI/MT standard, or made to client’s sample), polished (high polish, mirror polish), smooth, painting, powder coating, printing, electroplating etc.
Service Custom Made or OEM and ODM
Free Samples Okay
Production Ways CAD Drawing, 3D Files or Samples
Production Capacity 200T,300T and 500T Compressing Molding, Injection Molding, Auto Vacuum Vulcanizing, Plastic Injection, and Extrusion
Supplying Capacity One Million Pieces/ Month
Tolerance Generally±0.05mm or Better
QC PPAP, In House Control, Third Party Inspection Institution such SGS, TUV
Lead Time 15 Days for Molding, 15-20 Days for Series Production
Application Industry Machinery,Automotive,Mechanical Equipment, Construction, House Application,
Medical Machine
More Parts

Grommet, sleeve, feet, gasket, wheel, bellow, cap, dust cover, pad, washer, 

Strip, plug, stopper, grip, seal, bushing, bumper, blocks, and anti vibration mounts etc.

Supplying Standard and Customized Rubber & Plastic Parts
Established in 2004, Xihu (West Lake) Dis. Rubber is specialized in providing quality customized rubber molding,
extrusion parts, plastic injection products and some standard parts.

Meeting Various Standards
We have a fully-equipped workshop that meets ISO 9001:2015 and IATF 16949:2016 requirements.
Our products are compliant with FDA, WRAS, UL, RoHS and REACH standards, and meet DIN, JIS
, BS and ASTM regulations.

Parts include, but are not limited to:
Grommet, sleeve, feet, gasket, wheel, bellow, cap, dust cover, pad, washer, Strip, plug, stopper, grip,
seal, bushing, bumper, blocks, and anti vibration mounts etc.

FAQ

1. What types of rubber do you use?

Xihu (West Lake) Dis. Rubber has extensive experience in a vast range of rubber, including: Natural Rubber, SBR, CR, NBR, HNBR,
EPDM, Silicone Rubber, FPM, ACM, FK etc.

2. What types of plastic do you use?
Xihu (West Lake) Dis. Rubber has extensive experience in a vast range of plastics, including: ABS, Polypropylene (PP), PVC, POM,
PE, PEEK, Polyamide (PA) Nylons, PBT, etc.

3. What services do you provide?
We offer a broad range of services, including, Custom Rubber Molding, Liquid Injection Molding, Rubber Extrusion, and
Rubber/Plastic to Metal Bonded Parts.

4. Why us?
4.1 More than 15 years professional manufacture experience.
4.2 Professional R&D team, production team, sales team, after-sales service team.
4.3 Superior performance with most competitive price.
4.4 Faster delivery time.

5. Perfect quality control process
5.1 Raw material inspection 
      All raw materials before warehousing must be tested, and the corresponding physical property report shall be issued,
and compared with the physical property report of raw materials. Only when the test values of the 2 physical property
reports are consistent, can they be warehoused.

5.2 Mold inspection
      After mold development or cleaning, we will check the full size of the mold to ensure that the quality of each cavity is
the same.

5.3 Product inspection
      In the process of product production, inspectors regularly inspect the semi-finished products to ensure the rationality
of the process and control the defective rate within a reasonable range.

5.4 Finished product inspection
      The double inspection can ensure that the product appearance and size are 100% qualified.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How do flexible couplings handle shaft misalignment in rotating equipment?

Flexible couplings are designed to handle shaft misalignment in rotating equipment, providing several key features that allow them to accommodate misalignment effectively. Here’s how they work:

  • Angular Misalignment: Flexible couplings can handle angular misalignment, which occurs when the axes of the connected shafts are not perfectly aligned. The coupling’s flexible elements allow for slight angular deviation, ensuring that the torque can still be transmitted smoothly between the shafts.
  • Parallel Misalignment: Parallel misalignment occurs when the connected shafts are not perfectly in line but run parallel to each other. Flexible couplings can compensate for this misalignment by utilizing their ability to flex or slide, allowing the shafts to remain connected while maintaining rotational integrity.
  • Axial Misalignment: Axial misalignment refers to the situation where the connected shafts have a slight axial displacement. Some flexible couplings have specific designs to handle axial misalignment, allowing for limited movement along the axial direction without compromising the connection between the shafts.
  • Double Flexing: Certain types of flexible couplings, such as the double-flexing couplings, can accommodate both angular and parallel misalignments simultaneously. These couplings use two sets of flexible elements to achieve this capability, providing a higher degree of misalignment compensation.

Overall, the flexibility of the coupling’s material and design allows it to bend, flex, or slide in response to the misalignment, reducing the stress on the connected equipment and ensuring smooth power transmission. By accommodating misalignment, flexible couplings help prevent premature wear, reduce vibration, and extend the service life of the rotating equipment.

flexible coupling

What are the differences between single and double flexible coupling designs?

Single and double flexible couplings are two common designs used for power transmission in various mechanical systems. Here are the main differences between the two:

  • Design: The primary difference lies in their configuration. A single flexible coupling consists of one flexible element connecting two shafts, while a double flexible coupling, also known as a two-piece flexible coupling, uses two flexible elements with an intermediate shaft in between. The double flexible coupling resembles two single couplings connected in series.
  • Torsional Flexibility: Single flexible couplings typically provide greater torsional flexibility than double flexible couplings. The presence of an intermediate shaft in the double coupling design adds some rigidity and reduces the overall torsional flexibility of the system.
  • Compensation of Misalignment: Both single and double flexible couplings can compensate for angular and parallel misalignment between shafts. However, due to its additional flexible element, the double flexible coupling may have slightly better misalignment compensation capabilities.
  • Length and Space: Single flexible couplings are generally shorter in length compared to double flexible couplings. The double flexible coupling’s design requires additional space to accommodate the intermediate shaft, making it longer than the single coupling.
  • Shaft Separation: Single flexible couplings connect the two shafts directly without any intermediate components, while the double flexible coupling separates the shafts using an intermediate shaft. This shaft separation in the double design can be advantageous in certain applications.
  • Stiffness: The double flexible coupling tends to be slightly stiffer than the single flexible coupling due to the presence of the intermediate shaft, which may affect its ability to absorb vibrations and shock loads.
  • Application: Single flexible couplings are commonly used in various applications, including pumps, compressors, fans, and general power transmission systems. Double flexible couplings are often preferred in applications where a higher level of torsional stiffness is required, such as certain industrial machinery.

Both single and double flexible coupling designs have their advantages and are suitable for different types of machinery and power transmission requirements. The choice between the two depends on factors such as the specific application, the level of misalignment compensation needed, the available space, and the desired torsional flexibility for the system.

flexible coupling

Can flexible couplings be used in applications with varying operating temperatures?

Yes, flexible couplings can be used in applications with varying operating temperatures. The suitability of a flexible coupling for a specific temperature range depends on its design and the materials used in its construction. Different types of flexible couplings are available to handle a wide range of temperature conditions, making them versatile for use in various industries and environments.

High-Temperature Applications:

For applications with high operating temperatures, such as those found in certain industrial processes, exhaust systems, or high-temperature machinery, flexible couplings made from materials with excellent heat resistance are used. These materials may include stainless steel alloys, heat-treated steels, or specialized high-temperature elastomers. High-temperature flexible couplings are designed to maintain their mechanical properties, including flexibility and torque transmission capabilities, even at elevated temperatures.

Low-Temperature Applications:

Conversely, for applications in extremely cold environments or cryogenic processes, flexible couplings constructed from materials with low-temperature resistance are employed. These couplings are designed to remain flexible and functional at very low temperatures without becoming brittle or losing their ability to handle misalignment. Some low-temperature couplings may use special polymers or elastomers with excellent cold-temperature performance.

Temperature Range Considerations:

When selecting a flexible coupling for applications with varying operating temperatures, it is essential to consider the specific temperature range in which the coupling will operate. Some flexible couplings have a wider temperature range, allowing them to function effectively in both high and low-temperature environments. However, in extreme temperature conditions, specialized couplings may be necessary to ensure reliable performance and prevent premature failure.

Manufacturer Guidelines:

Manufacturers of flexible couplings provide guidelines and specifications regarding the temperature range of their products. It is crucial to consult the manufacturer’s documentation to ensure that the chosen coupling is suitable for the intended operating temperature of the application. Using a coupling beyond its recommended temperature range can lead to performance issues, reduced efficiency, or even failure.

Applications:

Flexible couplings with varying temperature resistance find use in numerous industries, including aerospace, automotive, manufacturing, power generation, and more. Whether in high-temperature exhaust systems, low-temperature cryogenic processes, or regular industrial applications with temperature fluctuations, flexible couplings play a vital role in providing reliable power transmission and misalignment compensation.

In summary, flexible couplings can be effectively used in applications with varying operating temperatures, provided that the coupling’s design and material properties align with the specific temperature requirements of the application.

China Professional High Abrasion Resistant Flexible Rubber Jaw Shaft Star Coupling Element PU Coupling Spider  China Professional High Abrasion Resistant Flexible Rubber Jaw Shaft Star Coupling Element PU Coupling Spider
editor by CX 2024-02-25

China manufacturer Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Main products
Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings.
Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.
Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. However, due to the strength of elastic elements, the transmitted torque is generally inferior to that of flexible couplings without elastic elements. Common types include elastic sleeve pin couplings, elastic pin couplings, quincunx couplings, tire type couplings, serpentine spring couplings, spring couplings, etc

Coupling performance

1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

How to select the appropriate coupling type

The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.

If you cannot determine the type, you can contact our professional engineer

Related products

 

Company Profile

 

Our Equipments

Main production equipment:
Large lathe, surface grinder, milling machine, gear shaper, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, casting equipment, etc.
Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector, special detection, modular fixture (self-made), etc.

Machining equipments
Heat equipment

 

Our Factory
Application – Photos from our partner customers

Company Profile
Our leading products are mechanical transmission basic parts – couplings, mainly including universal couplings, drum gear couplings, elastic couplings and other 3 categories of more than 30 series of varieties. It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.
Our factory takes the basic parts of national standards as the benchmark, has more than 40 years of coupling production experience, takes “scientific management, pioneering and innovation, ensuring quality and customer satisfaction” as the quality policy, and aims to continuously provide users with satisfactory products and services. The production is guided by reasonable process, and the ISO9001:2015 quality management system standard is strictly implemented. We adhere to the principle of continuous improvement and innovation of coupling products. In recent years, it has successfully developed 10 national patent products such as SWF cross shaft universal coupling, among which the double cross shaft universal joint has won the national invention patent, SWF cross shaft universal coupling has won the new product award of China’s general mechanical parts coupling industry and the ZHangZhoug Province new product science and technology project.
Our factory has strong technical force, excellent process equipment, complete professional production equipment, perfect detection means, excellent after-sales service, various products and complete specifications. At the same time, we can provide the design and manufacturing of special non-standard products according to the needs of users. Our products sell well at home and abroad, and are trusted by the majority of users. We sincerely welcome friends from all walks of life at home and abroad to visit and negotiate for common development.p

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

Can flexible couplings be used in precision motion control systems?

Yes, flexible couplings can be used in precision motion control systems, but careful consideration must be given to their selection and application. Precision motion control systems require high accuracy, repeatability, and minimal backlash. Flexible couplings can play a crucial role in such systems when chosen appropriately and used in the right conditions.

Selection Criteria: When selecting a flexible coupling for a precision motion control system, several key factors should be considered:

  • Backlash: Look for couplings with minimal or no backlash to ensure accurate motion transmission and precise positioning.
  • Torsional Stiffness: Choose a coupling with sufficient torsional stiffness to minimize torsional deflection and maintain accurate motion control.
  • Misalignment Compensation: Ensure the coupling can accommodate the required misalignment without introducing significant variations in motion accuracy.
  • Dynamic Performance: Evaluate the coupling’s dynamic behavior under varying speeds and loads to ensure smooth and precise motion control during operation.
  • Material and Construction: Consider the material and construction of the coupling to ensure it can withstand the specific environmental conditions and loads of the motion control system.
  • Size and Space Constraints: Choose a compact and lightweight coupling that fits within the available space and does not add excessive inertia to the system.

Applications: Flexible couplings are commonly used in precision motion control systems, such as robotics, CNC machines, semiconductor manufacturing equipment, optical systems, and high-precision measurement instruments. They help transmit motion from motors to various components, such as lead screws, spindles, or precision gears, while compensating for misalignments and providing shock and vibration absorption.

Specialized Couplings: For ultra-high precision applications, specialized couplings, such as zero-backlash or torsionally rigid couplings, may be preferred. These couplings are designed to provide precise motion transmission without any play or torsional deflection, making them suitable for demanding motion control tasks.

Installation and Alignment: Proper installation and alignment are critical to achieving optimal performance in precision motion control systems. Precise alignment of the coupling and connected components helps maintain accurate motion transmission and minimizes eccentricities that could impact the system’s precision.

Summary: Flexible couplings can indeed be used in precision motion control systems when chosen and applied correctly. By considering factors like backlash, torsional stiffness, misalignment compensation, and dynamic performance, users can select the right coupling to ensure high accuracy, repeatability, and reliable motion control in their specific application.

flexible coupling

How does a flexible coupling help in torque and rotational speed control?

A flexible coupling plays a crucial role in torque and rotational speed control in rotating machinery. It offers several benefits that contribute to efficient power transmission and help maintain desired operating conditions:

  • Torque Transmission: Flexible couplings transmit torque from one shaft to another while accommodating misalignments. They provide a reliable connection that allows the driving shaft to transfer rotational force (torque) to the driven shaft without causing undue stress on the connected components.
  • Smooth Power Transmission: Flexible couplings help reduce shocks and vibrations that can occur during startup, shutdown, or sudden load changes. By damping these vibrations, the coupling ensures smooth power transmission and protects the connected equipment from unnecessary wear.
  • Rotational Speed Control: In certain applications, especially those involving precision motion control, maintaining consistent rotational speed is critical. Flexible couplings can help by minimizing backlash and torsional wind-up. Backlash refers to the play or gap between the coupling’s components, while torsional wind-up is the twisting deformation that can occur under torque load. Flexible couplings with low backlash and high torsional stiffness contribute to accurate rotational speed control.
  • Compensation for Misalignment: Rotating machinery may experience misalignment due to various factors such as thermal expansion, foundation settling, or machining tolerances. Flexible couplings accommodate angular, parallel, and axial misalignments, which helps in maintaining proper alignment between the shafts and reduces unnecessary torque variations.
  • Protection from Overloads: Flexible couplings can act as a mechanical fuse by disengaging or slipping when subjected to excessive torque loads. This feature protects the connected components from damage caused by sudden overloads or jamming events.
  • Energy Efficiency: Certain types of flexible couplings, such as elastomeric couplings or beam couplings, have low mass and inertia. This characteristic reduces energy losses and contributes to overall system efficiency.

By providing reliable torque transmission, smooth power transfer, rotational speed control, and compensation for misalignment, flexible couplings optimize the performance and longevity of rotating machinery. Additionally, they enhance the safety and efficiency of various industrial processes by protecting equipment from excessive loads and ensuring smooth operation in diverse applications.

flexible coupling

Can you explain the different types of flexible coupling designs available?

There are several types of flexible coupling designs available, each with its unique construction and characteristics. These designs are tailored to meet specific application requirements and address different types of misalignment and torque transmission needs. Here are some of the most common types of flexible couplings:

  • Jaw Couplings: Jaw couplings consist of two hubs with curved jaws and an elastomer spider placed between them. The spider acts as a flexible element and can compensate for angular and parallel misalignment. Jaw couplings are widely used in various industrial applications due to their simple design and effectiveness in handling misalignment and vibration damping.
  • Disc Couplings: Disc couplings use thin metallic discs with a series of alternating slits and flanges to connect the shafts. The disc coupling design allows for excellent misalignment compensation, including angular, parallel, and axial misalignment. Disc couplings are known for their high torsional stiffness and precise torque transmission capabilities.
  • Gear Couplings: Gear couplings consist of toothed hubs connected by an external sleeve with gear teeth. They are well-suited for applications with high torque and moderate misalignment. Gear couplings offer good misalignment compensation and high torque capacity, making them popular in heavy-duty industrial applications.
  • Beam Couplings: Beam couplings use a single piece of flexible material, often a metal beam, to connect the shafts. The material’s flexibility allows for angular and axial misalignment compensation. Beam couplings are compact, lightweight, and provide low inertia, making them suitable for applications with high-speed requirements.
  • Bellows Couplings: Bellows couplings consist of a bellows-like flexible structure that connects the two hubs. They can compensate for angular, parallel, and axial misalignment. Bellows couplings are known for their high torsional stiffness and ability to maintain constant velocity transmission.
  • Oldham Couplings: Oldham couplings use three discs, with the middle one having a perpendicular slot. This design allows for angular misalignment compensation while transmitting torque between the hubs. Oldham couplings are often used when electrical isolation between shafts is required.

Each flexible coupling design has its strengths and limitations, and the choice depends on factors such as the application’s torque requirements, misalignment conditions, operating environment, and speed. Proper selection of the coupling type ensures optimal performance, efficiency, and reliability in various mechanical systems and rotating machinery.

China manufacturer Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  China manufacturer Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling
editor by CX 2024-02-20

China Custom Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

Product Description

Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric flexible gear Coupling

Application of Shaft Chain Coupling

A shaft chain coupling is a type of coupling that is used to connect 2 shafts that are not perfectly aligned. The coupling consists of a chain that is connected to 2 sprockets, 1 on each shaft. The chain allows the shafts to move slightly relative to each other, which helps to compensate for misalignment.

Shaft chain couplings are used in a wide variety of applications, including:

  • Conveyors: Shaft chain couplings are used in conveyors to transmit power from the motor to the conveyor belt.
  • Pumps: Shaft chain couplings are used in pumps to transmit power from the motor to the pump shaft.
  • Fans: Shaft chain couplings are used in fans to transmit power from the motor to the fan shaft.
  • Generators: Shaft chain couplings are used in generators to transmit power from the turbine to the generator rotor.
  • Wind turbines: Shaft chain couplings are used in wind turbines to transmit power from the turbine to the generator rotor.

Shaft chain couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, including:

  • Can compensate for misalignment: Shaft chain couplings can compensate for misalignment up to 2 degrees. This makes them ideal for applications where the shafts are not perfectly aligned, such as when the equipment is installed in a new location or when the equipment is subject to vibration.
  • Easy to install: Shaft chain couplings are easy to install and maintain. They can be installed without special tools or training.
  • Available in a variety of sizes and styles: Shaft chain couplings are available in a variety of sizes and styles to meet the needs of different applications. This makes it easy to find a coupling that is the right size and style for your application.
  • Highly efficient: Shaft chain couplings are highly efficient, meaning that they transmit a large percentage of the power from the driving shaft to the driven shaft. This can save money on energy costs.
  • Durable: Shaft chain couplings are durable and can withstand a wide range of operating conditions.

Here are some of the disadvantages of using shaft chain couplings:

  • Cost: Shaft chain couplings can be more expensive than other types of couplings.
  • Maintenance: Shaft chain couplings require periodic maintenance, such as checking the coupling for wear and tear and lubricating the chain as needed.

Overall, shaft chain couplings are a versatile and reliable type of coupling that can be used in a wide variety of applications. They offer a number of advantages over other types of couplings, but they also have some disadvantages. The best type of coupling for a particular application will depend on the specific requirements of that application.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible gear coupling

Materials Used in Manufacturing Flexible Gear Couplings and Their Impact on Performance

Flexible gear couplings are designed to transmit torque while accommodating misalignments and reducing vibrations. The choice of materials for manufacturing these couplings plays a crucial role in their overall performance and suitability for specific applications. Some common materials used in flexible gear couplings include:

  • Steel: Steel is a popular material for flexible gear couplings due to its high strength and durability. It can handle substantial torque loads and provides good resistance to wear and fatigue. Steel couplings are commonly used in heavy-duty applications, such as steel mills, mining, and power generation.
  • Stainless Steel: Stainless steel is used when corrosion resistance is required, making it suitable for applications in corrosive environments like the marine, chemical, and petrochemical industries.
  • Alloy Steel: Alloy steel is used to improve specific properties, such as hardness and heat resistance. It is often employed in high-temperature applications found in steel processing and power generation.
  • Cast Iron: Cast iron is known for its excellent wear resistance and damping capabilities. It is used in applications where shock absorption and vibration reduction are critical, such as pumps and compressors.
  • Aluminum: Aluminum is lightweight and offers good corrosion resistance, making it suitable for applications where weight reduction is important, such as aerospace and certain industrial machinery.
  • Bronze: Bronze is used for its self-lubricating properties and resistance to wear. It is often found in couplings used in low-speed applications, such as conveyor systems.
  • Nylon and Plastics: Nylon and other plastics are used in some couplings where electrical isolation and lightweight properties are essential, such as in medical equipment and certain automation systems.

The selection of materials depends on the specific requirements of the application, including torque, speed, temperature, environmental conditions, and the presence of corrosive substances. Proper material selection ensures that the flexible gear coupling can operate efficiently and reliably, providing optimal performance and minimizing maintenance needs.

flexible gear coupling

Potential Causes of Failure in Flexible Gear Couplings and Prevention

Flexible gear couplings, like any mechanical component, may experience failures if not properly maintained or operated. Some potential causes of failure and ways to prevent them include:

  • Misalignment: Misalignment between the shafts can cause excessive stress on the coupling components, leading to failure. Regularly check and align the shafts to ensure they are properly aligned within specified tolerances.
  • Overloading: Exceeding the rated torque capacity of the coupling can result in premature failure. Always operate within the recommended torque limits and avoid sudden shock loads.
  • Poor Lubrication: Inadequate or improper lubrication can lead to increased friction, wear, and overheating. Follow the manufacturer’s guidelines for lubrication frequency and use the correct type of lubricant.
  • Corrosion: Exposure to corrosive environments can degrade the coupling’s material over time. Select couplings made from corrosion-resistant materials or use protective coatings when necessary.
  • Fatigue: Cyclic loading and continuous operation can cause fatigue failure in flexible gear couplings. Ensure the coupling is rated for the application’s required number of cycles and replace it if it shows signs of fatigue or wear.
  • Temperature: Operating the coupling at temperatures beyond its limits can lead to material degradation and reduced performance. Check the coupling’s temperature rating and operate within the specified range.

Regular inspection, maintenance, and adherence to the manufacturer’s guidelines are essential to prevent failure and ensure the reliable performance of flexible gear couplings. Implementing preventive measures can extend the couplings’ lifespan, minimize downtime, and enhance the overall efficiency of the machinery they are part of.

flexible gear coupling

Proper Installation of Flexible Gear Couplings for Optimal Performance and Reliability

Proper installation of a flexible gear coupling is crucial to ensure its optimal performance, reliability, and longevity. Here are the steps to follow for a successful installation:

  1. Inspect the Coupling: Before installation, carefully inspect the coupling components, including the hubs, gear teeth, and flexible element, for any damage or defects.
  2. Clean the Components: Ensure that all components are clean and free from dirt, debris, and any contaminants that could affect the coupling’s performance.
  3. Check Alignment: Verify that the shafts of the connected equipment are properly aligned within the manufacturer’s recommended tolerances. Misalignment can lead to premature wear and failure of the coupling.
  4. Grease or Lubricate: Apply the appropriate coupling lubricant or grease to the gear teeth and the flexible element. Lubrication helps reduce friction, heat generation, and wear.
  5. Assemble the Coupling: Carefully assemble the coupling by aligning the gear teeth of the hubs and the internal sleeve. Follow the manufacturer’s guidelines for the correct orientation and positioning.
  6. Tighten Fasteners: Gradually tighten the fasteners, such as bolts or screws, in a cross-pattern to ensure even pressure distribution. Do not overtighten, as it can cause deformation of the coupling components.
  7. Perform a Trial Run: After installation, perform a trial run to check for any abnormalities, unusual noises, or vibrations. Monitor the coupling during the trial run to detect any potential issues.
  8. Regular Maintenance: Implement a regular maintenance schedule to inspect and lubricate the coupling periodically. Follow the manufacturer’s maintenance guidelines to ensure the coupling’s continued performance and reliability.
  9. Replace Worn Components: If any components of the coupling show signs of wear or damage during maintenance inspections, replace them promptly to prevent further issues.

It is essential to follow the manufacturer’s installation instructions and guidelines specific to the flexible gear coupling model to achieve the best results. Proper installation enhances the coupling’s ability to handle misalignment, transmit torque efficiently, and ensure reliable operation in the power transmission system.

China Custom Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling  China Custom Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling
editor by CX 2024-02-18

China wholesaler Original Excavator Parts Coupling CF-a Series Rubber Flexible Torsionally Steel Universal Shaft Coupling for Centaflex

Product Description

Original Excavator Parts Coupling CF-a Series Rubber Flexible Torsionally Steel Universal Shaft Coupling for Centafle

Product Display:                                                                                                                                                        
 

 Model  Outer Diameter(mm)  Inner Diameter(mm)  Hight(mm)  Diameter from Hole to Hole(mm)  Weight(kg)
4A/4AS 103 53 28 68 0.18
8A/8AS 134 71 32 88 0.26
16A/16AS 160 80 41 110 0.54
22A/22AS 165 86 41 128 0.66
25A/25AS 183 102 46 123 0.78
28A/AS         0.88
30A/30AS 213 117 57 145 1.28
50A/50AS 220 123 57 165 1.48
80A/80As 225 120 65 167 1.92
90A/90As 278 148 70 190 3.1
140A/140AS 285 151 71 215 3.42
250A/250AS         6.6
284B         6.34
4, 4655134, EX3, ZAX460MTH, ZAX480MTH, 4636444, ZX470-3, EX470, ZAX470, ZAX450-3, ZAX450-3F, ZAX5, Atlas Copco,,

 

AC 385,  AC 396, AC415, AC416, AC 455, AC485,

AC 486,  AC86, AC836, AC976, AC 6-712, 4DNV98

Chinese Brand Excavators: 

LGK: 6085, 200

CLG 60, 205, 220, 906, 907, 908, 920, 925, 936, CLG906C, CLG922LG

YC50-8, YC60-8, YC60-8, YC135-8, YC230, YC230-8, YC230LC-8, YC360, YC85, YC50,  YC85-7, YC60-7, YC135

SW50, 60, 70, 150

FR85-7, FR65, FR80, FR150-7,

ZL 60, 205, 230, 360 

SY55, SY60, SY215, SY230, SY210, SY220, SY310 
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the common installation mistakes to avoid when using flexible couplings?

Proper installation is crucial for the reliable and efficient performance of flexible couplings. Here are some common installation mistakes to avoid:

  • Incorrect Alignment: One of the most critical installation errors is improper alignment of the driving and driven shafts. Misalignment can lead to premature wear, increased vibration, and reduced power transmission efficiency. It is essential to align the shafts within the specified tolerances provided by the coupling manufacturer.
  • Over-Tightening: Applying excessive torque to the coupling’s fasteners during installation can cause damage to the flexible elements and decrease their ability to accommodate misalignment. It is essential to follow the recommended torque values provided by the coupling manufacturer to ensure proper clamping without over-tightening.
  • Improper Lubrication: Some flexible couplings may require lubrication of their flexible elements or moving parts. Failure to lubricate as recommended can lead to increased friction, wear, and reduced service life of the coupling.
  • Using Damaged Couplings: Before installation, it is crucial to inspect the flexible coupling for any signs of damage or defects. Using a damaged coupling can lead to premature failure and potential safety hazards. If any damage is detected, the coupling should be replaced with a new one.
  • Wrong Coupling Selection: Selecting the wrong type or size of the coupling for the application can result in inadequate performance, premature wear, and possible coupling failure. It’s essential to consider factors such as torque requirements, speed, misalignment compensation, and environmental conditions when choosing the appropriate coupling.
  • Ignoring Operating Conditions: Failure to consider the specific operating conditions, such as temperature, humidity, and exposure to corrosive substances, can lead to accelerated wear and reduced coupling lifespan. Choosing a coupling that is compatible with the operating environment is essential.
  • Ignoring Manufacturer Guidelines: Each flexible coupling comes with specific installation guidelines provided by the manufacturer. Ignoring these guidelines can lead to suboptimal performance and potential safety issues. It is crucial to carefully follow the manufacturer’s instructions during installation.

By avoiding these common installation mistakes and following best practices, the reliability, efficiency, and service life of flexible couplings can be maximized, leading to improved performance of the mechanical system as a whole.

flexible coupling

How does a flexible coupling contribute to reducing maintenance and downtime costs?

A flexible coupling plays a significant role in reducing maintenance and downtime costs in mechanical systems. Here are the ways in which it achieves this:

  • Misalignment Compensation: Flexible couplings can accommodate both angular and parallel misalignments between shafts. By absorbing and compensating for misalignment, they reduce wear and stress on connected equipment, minimizing the risk of premature failures and the need for frequent adjustments.
  • Vibration Damping: Flexible couplings dampen vibrations and shock loads in the system. This not only protects the connected components from excessive wear but also reduces the likelihood of damage to bearings, seals, and other critical parts, which would otherwise require frequent replacement or repair.
  • Protection Against Shock Loads: In applications where sudden starts, stops, or load fluctuations occur, flexible couplings can absorb and dissipate some of the shock loads, preventing potential damage to machinery. This feature extends the equipment’s lifespan and minimizes unplanned downtime.
  • Longevity of Components: By reducing stress and wear on connected components, flexible couplings contribute to their longevity. Components such as bearings, shafts, and gears are subject to less strain and fatigue, resulting in extended service intervals and reduced replacement costs.
  • Easy Installation and Maintenance: Flexible couplings are relatively easy to install and require minimal maintenance. Routine inspections to check for wear or damage can be done without significant downtime, allowing proactive maintenance to address any issues before they escalate.
  • Adaptability to Operating Conditions: Flexible couplings can handle variations in operating conditions, such as temperature fluctuations and different types of loads. Their ability to accommodate changing conditions reduces the need for frequent adjustments or component replacements due to environmental factors.
  • Reduced Downtime during Maintenance: In the event of maintenance or equipment repairs, flexible couplings can be quickly disconnected and reconnected, minimizing the downtime required for servicing. This quick replacement reduces production losses and improves overall system efficiency.

Overall, the use of flexible couplings in mechanical systems promotes reliability, extends the life of equipment, and helps prevent costly breakdowns. By reducing maintenance and downtime costs, flexible couplings contribute to improved productivity and profitability for industrial operations.

flexible coupling

What are the factors to consider when choosing a flexible coupling for a specific system?

Choosing the right flexible coupling for a specific system requires careful consideration of several factors. The following are the key factors that should be taken into account:

  • 1. Misalignment Requirements: Assess the type and magnitude of misalignment expected in the system. Different couplings are designed to handle specific types of misalignment, such as angular, parallel, or axial misalignment. Choose a coupling that can accommodate the expected misalignment to prevent premature wear and failure.
  • 2. Torque Capacity: Determine the required torque capacity of the coupling to ensure it can transmit the necessary power between the shafts. Consider both the continuous and peak torque loads that the system may experience.
  • 3. Operating Speed: Take into account the rotational speed of the system. High-speed applications may require couplings that can handle the additional centrifugal forces and balance requirements.
  • 4. Temperature Range: Consider the operating temperature range of the system. Select a coupling material that can withstand the temperatures encountered without losing its mechanical properties.
  • 5. Environment and Conditions: Evaluate the environmental conditions where the coupling will be used, such as exposure to moisture, chemicals, dust, or corrosive substances. Choose a coupling material that is compatible with the operating environment.
  • 6. Space Constraints: Assess the available space for the coupling installation. Some couplings have compact designs suitable for applications with limited space.
  • 7. Installation and Maintenance: Consider the ease of installation and maintenance. Some couplings may require special tools or disassembly for maintenance, while others offer quick and simple installation.
  • 8. Torsional Stiffness: Evaluate the torsional stiffness of the coupling. A balance between flexibility and stiffness is essential to prevent excessive torsional vibrations while accommodating misalignment.
  • 9. Shock and Vibration Damping: For applications with high shock loads or vibration, select a coupling with excellent damping characteristics to protect the system from excessive forces.
  • 10. Cost and Budget: Compare the cost of the coupling with the overall budget for the system. Consider the long-term cost implications, including maintenance and replacement expenses.

Ultimately, the choice of a flexible coupling should align with the specific requirements and operating conditions of the system. Consulting with coupling manufacturers or engineering experts can provide valuable insights to ensure the optimal selection of a coupling that enhances system performance, reliability, and efficiency.

China wholesaler Original Excavator Parts Coupling CF-a Series Rubber Flexible Torsionally Steel Universal Shaft Coupling for Centaflex  China wholesaler Original Excavator Parts Coupling CF-a Series Rubber Flexible Torsionally Steel Universal Shaft Coupling for Centaflex
editor by CX 2024-02-18

China Custom Manufacturers Multiple Types/Size Flexible Coupling Rubber Shaft Coupling 8A for Excavator Coupling

Product Description

Manufacturers Multiple Types/Size Flexible Coupling rubber shaft coupling 8A for excavator coupling
Our main products:
steel cover lock, filter, oil grid, pump, cylinder head, crankshaft, camshaft, connecting rod, connecting rod bearing, valve, plunger, nozzle, exhaust valve, engine assembly, intake pump , fan blade, engine preheater, radiator, intake valve, main bearing, crankshaft bearing, nozzle, nozzle pipe, oil pump, piston, piston pin, piston ring, plunger, valve seat, thrust bearing, valve guide, valve Seats, valve seals, gasket sets, water pumps, turbochargers, generators, starters, sensors…

Please click here>>>>Contact us for more factory price,shipping and discounts

ENGINE CUSHION
NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name
1 KLB-Q3001 PC40 105*53*10 ENGINE CUSHION 15 KLB-Q3015 E312
FRONT
95*28*16 ENGINE CUSHION 29 KLB-Q3571 SK230 90*45*21 ENGINE CUSHION
2 KLB-Q3002 PC120-6 4D102 82*46*18 ENGINE CUSHION 16 KLB-Q3016 EX312
REAR
95*29*17 ENGINE CUSHION 30 KLB-Q3030 HD250 59*31*13 ENGINE CUSHION
3 KLB-Q3003 PC200-3 124*68*45
205-01-71111
ENGINE CUSHION 17 KLB-Q3017 ZAX230
FRONT
95*28*16 ENGINE CUSHION 31 KLB-Q3031 HD450
FRONT
97*15*19 ENGINE CUSHION
4 KLB-Q3004 PC200-5/6
FRONT
80*46*19
20Y-01-12210
ENGINE CUSHION 18 KLB-Q3018 E320B 110*40*22 ENGINE CUSHION 32 KLB-Q3032 HD450
REAR
118*36*19 ENGINE CUSHION
5 KLB-Q3005 PC200-5
REAR
130*73*25
20Y-01-12221
ENGINE CUSHION 19 KLB-Q3019 E330B 136*44*25 ENGINE CUSHION 33 KLB-Q3033 LS120 87*42*17 ENGINE CUSHION
6 KLB-Q3006 PC200-6
6D102
20Y-01-12222 ENGINE CUSHION 20 KLB-Q3571 DH220-3
FRONT
68*70*12 ENGINE CUSHION 34 KLB-Q3034 LS280
FRONT
86*23*16 ENGINE CUSHION
7 KLB-Q3007 EX200   ENGINE CUSHION 21 KLB-Q3571 DH220-3
REAR
110*105*14 ENGINE CUSHION 35 KLB-Q3035 LS280
REAR
96*25*16 ENGINE CUSHION
8 KLB-Q3008 EX200-5
REAR
167*110*14 ENGINE CUSHION 22 KLB-Q3571 DH220-5 104*74*19 ENGINE CUSHION 36 KLB-Q3036 SH60
SH65
120*110*12 ENGINE CUSHION
9 KLB-Q3009 EX200-6
REAR
175*135*16 ENGINE CUSHION 23 KLB-Q3571 DH280
FRONT
165*200*16 ENGINE CUSHION 37 KLB-Q3037 6D22
FRONT
70*35*21 ENGINE CUSHION
10 KLB-Q3571 EX200
FRONT
120*155*14 ENGINE CUSHION 24 KLB-Q3571 DH280
REAR
200*110*20 ENGINE CUSHION 38 KLB-Q3038 6D22
REAR
95*41*22 ENGINE CUSHION
11 KLB-Q3011 EX200
REAR
165*105*14 ENGINE CUSHION 25 KLB-Q3571 SK60
FRONT
98*103*12 ENGINE CUSHION 39 KLB-Q3039 DH55
FRONT
100*48*17 ENGINE CUSHION
12 KLB-Q3012 EX200 126*100*11 ENGINE CUSHION 26 KLB-Q3026 SK60
REAR
98*103*16 ENGINE CUSHION 40 KLB-Q3040 SH200A3 137*160*16 ENGINE CUSHION
13 KLB-Q3013 EX300
FRONT
87*35*20 ENGINE CUSHION 27 KLB-Q3571 SK120
FRONT
100*15*19 ENGINE CUSHION          
14 KLB-Q3014 EX300
REAR
110*39*22 ENGINE CUSHION 28 KLB-Q3571 SK120
FEAR
100*47*19 ENGINE CUSHION          

COUPLING
NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name
1 KLB-Q2001   25H  162*92 COUPLING 22 KLB-Q2571 16A 155*76 COUPLING 43 KLB-Q2043 S32S 235*97 COUPLING
2 KLB-Q2002 MS110 DH55 30H 195*105 COUPLING  23 KLB-Q2571 16AS 155*76 COUPLING 44 KLB-Q2044 S25S 163*58 COUPLING
3 KLB-Q2003 30H  195*105 COUPLING ASSY 24 KLB-Q2571 22A 153*76 COUPLING 45 KLB-Q2045 E200B 14T     COUPLING
4 KLB-Q2004 EX200-2 40H 170*90 COUPLING 25 KLB-Q2571 25A 185*102 COUPLING 46 KLB-Q2046 50AC 14T  205*40 COUPLING
5 KLB-Q2005 40H   170*90 COUPLING ASSY 26 KLB-Q2026 25AS 185*102 COUPLING 47 KLB-Q2047 SH280   COUPLING
6 KLB-Q2006 45H  183*92 COUPLING 27 KLB-Q2571 28A 178*93 COUPLING 48 KLB-Q2048 E200B  12T   COUPLING
7 KLB-Q2007 45H 183*92 COUPLING ASSY 28 KLB-Q2571 28AS 178*93 COUPLING 49 KLB-Q2049 50AM  16T 205*45 COUPLING
8 KLB-Q2008 90H  203*107 COUPLING 29 KLB-Q2571 30A 215*118 COUPLING 50 KLB-Q2050 SH200 14T  205*40 COUPLING
9 KLB-Q2009 90H  203*107 COUPLING ASSY 30 KLB-Q2030 30AS 215*118 COUPLING 51 KLB-Q2051 E330C 350*145 COUPLING
10 KLB-Q2571 50H  195*110 COUPLING 31 KLB-Q2031 50A 205*108 COUPLING 52 KLB-Q2052 E330C   COUPLING
11 KLB-Q2011 50H   195*110 COUPLING ASSY 32 KLB-Q2032 50AS  205*108 COUPLING 53 KLB-Q2053 168mm*48m 26T 3H   COUPLING
12 KLB-Q2012 110H  215*110 COUPLING 33 KLB-Q2033 90A 272*140 COUPLING 54 KLB-Q2054 242mm*72mm 50T 8H   COUPLING
13 KLB-Q2013 110H 215*110 COUPLING ASSY 34 KLB-Q2034 90AS 272*140 COUPLING 55 KLB-Q2055 295mm*161mm 48T 12H   COUPLING
14 KLB-Q2014 140H  245*125 COUPLING 35 KLB-Q2035 140A 262*132 COUPLING 56 KLB-Q2056 352mm*161mm 48T 8H   COUPLING
15 KLB-Q2015 140H   245*125 COUPLING ASSY 36 KLB-Q2036 140AS 262*132 COUPLING 57 KLB-Q2057 352mm*161mm 46T 8H   COUPLING
16 KLB-Q2016 160H  255*134 COUPLING 37 KLB-Q2037 E300B  16T  278*54 COUPLING 58 KLB-Q2058 318mm*72mm 50T 8H   COUPLING
17 KLB-Q2017 160H  255*134 COUPLING ASSY 38 KLB-Q2038 E450 16T 360*52 COUPLING 59 KLB-Q2059 315mm 42T   COUPLING
18 KLB-Q2018 4A 104*53 COUPLING 39 KLB-Q2039 SH430   12T  205*35 COUPLING 60 KLB-Q2060 268mm*100mm 42T 6H   COUPLING
19 KLB-Q2019 4AS 104*53 COUPLING 40 KLB-Q2040 SH200 14T  205*40 COUPLING 61 KLB-Q2061 167mm*90mm 47T 3H   COUPLING
20 KLB-Q2571 8A 130*70 COUPLING 41 KLB-Q2041 50ASM  20T  205*40 COUPLING 62 KLB-Q2062 182mm 42T    COUPLING
21 KLB-Q2571 8AS 130*70 COUPLING 42 KLB-Q2042 SH160(SH60)  15T 173*22 COUPLING 63 KLB-Q2063 220mm 46T    COUPLING

1Q:What is your brand?
1A:Our own brand: Mita Group and its range of excavator parts.

2Q:Do you have your own factory? Can we have a visit?
2A:Absolutely, you are alwayswelcome to visit our factory.

3Q:How do you control the quality of the products?
3A:Our factory was obtained the ISO9001CERTIFICATE.Every process of the production is strictly controlled. And all products will be inspected by QC before shipment.

4Q:How long is the delivery time?
4A:2 to 7 days for ex-stock orders. 15 to 30 days for production.

5Q:Can we print our company logo onproduct and package?
5A:Yes, but the quantity of the order is required. And we need you to offer the Trademark Authorization to us.

6Q:Can you provide OEM BRAND package?
6A:Sorry, we can only offer our company ACT BRAND package or neutral packing,blank package ifyou need, and the Buyers’ Brand as authorized.7Q:How long is the warranty period?7A:3 months /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the real-world applications of flexible couplings in various industries?

Flexible couplings are widely used in a variety of industries to transmit power and motion between rotating shafts while accommodating misalignments and reducing vibrations. Some of the real-world applications of flexible couplings include:

  • Industrial Machinery: Flexible couplings are extensively used in industrial machinery such as pumps, compressors, fans, mixers, and conveyors. They help transmit power from motors to driven equipment, while absorbing misalignments and reducing shock loads and vibrations.
  • Automotive: In the automotive industry, flexible couplings are used in various applications, including drive shafts, steering systems, and engine accessories. They help transmit power and motion while allowing for misalignment and reducing torsional vibrations.
  • Aerospace: In aircraft and aerospace applications, flexible couplings are used in engine systems, landing gear, and flight control systems. They provide reliable power transmission while accommodating misalignment and reducing vibrations in the demanding aerospace environment.
  • Marine: Flexible couplings are used in marine propulsion systems to connect the engine to the propeller shaft. They help transmit power and motion while compensating for shaft misalignment and reducing vibrations in marine vessels.
  • Renewable Energy: In wind turbines and solar tracking systems, flexible couplings are used to transfer power and motion between the turbine or solar panel and the generator. They allow for misalignment caused by wind and sun direction changes, ensuring optimal energy conversion.
  • Oil and Gas: In the oil and gas industry, flexible couplings are used in pumps, compressors, and drilling equipment. They provide reliable power transmission while accommodating misalignments and reducing vibrations in harsh and demanding oilfield environments.
  • Mining and Construction: Flexible couplings are used in heavy-duty mining and construction equipment, including excavators, bulldozers, and loaders. They help transmit power from engines to drive systems while compensating for misalignments and reducing vibrations in rugged and challenging environments.
  • Food and Beverage: In food processing and packaging machinery, flexible couplings are used to transmit power and motion while meeting strict hygiene and safety requirements. They help prevent contamination while accommodating shaft misalignments.
  • Medical Equipment: Flexible couplings are used in medical devices and equipment, including imaging machines and robotic surgical systems. They help transmit motion and power while reducing vibrations and maintaining precision.
  • Textile Industry: In textile manufacturing machines, flexible couplings are used in spinning, weaving, and dyeing processes. They help transmit power efficiently while accommodating misalignments and reducing vibrations during high-speed operation.

These are just a few examples of the diverse applications of flexible couplings in various industries. Their ability to enhance power transmission efficiency, accommodate misalignments, and reduce vibrations makes them a versatile and indispensable component in modern machinery and equipment.

flexible coupling

Can flexible couplings be used in high-temperature environments, such as furnaces and kilns?

Flexible couplings can be used in high-temperature environments, such as furnaces and kilns, but the selection of the appropriate coupling is crucial to ensure reliable performance and longevity under these extreme conditions. Here are some key considerations:

  • Material Selection: The choice of materials is critical when using flexible couplings in high-temperature applications. Look for couplings made from heat-resistant materials that can withstand the elevated temperatures without experiencing significant degradation. Common materials used for high-temperature couplings include stainless steel, high-temperature alloys, and certain types of elastomers designed for heat resistance.
  • Lubrication: High temperatures can cause lubricants to break down or evaporate more quickly. Some flexible couplings may require specialized high-temperature lubricants to ensure smooth operation and reduce wear at elevated temperatures. Check the manufacturer’s recommendations for lubrication in high-temperature environments.
  • Thermal Expansion: In high-temperature applications, the equipment and shafts may experience thermal expansion, leading to misalignment. Flexible couplings with higher misalignment capabilities may be necessary to accommodate these thermal effects and prevent additional stress on the system.
  • Torsional Stiffness: Consider the required torsional stiffness for the specific application. In high-temperature environments, couplings may experience changes in stiffness due to temperature variations. It is essential to choose a coupling with appropriate torsional characteristics for the intended operating temperature range.
  • Application Specifics: Evaluate the specific operating conditions of the furnace or kiln, including the maximum and fluctuating temperatures, vibration levels, and potential exposure to chemicals or other harsh elements. Choose a coupling that can withstand these conditions without compromising performance or safety.
  • Coupling Type: Different types of flexible couplings offer varying degrees of heat resistance and performance capabilities. For example, certain types of disc couplings or metal bellows couplings are more suitable for high-temperature environments due to their robust construction and resistance to heat.
  • Regular Maintenance: In high-temperature applications, couplings may be subject to more stress and wear. Regular inspection and maintenance are essential to monitor the coupling’s condition, lubrication, and alignment to ensure it continues to function optimally in the challenging environment.

Overall, flexible couplings can be utilized in high-temperature environments, but it is vital to choose a coupling specifically designed and rated for these conditions. Working closely with coupling manufacturers and considering the specific demands of the application will help ensure that the selected coupling can handle the challenges posed by furnaces, kilns, and other high-temperature equipment, providing reliable power transmission and contributing to the overall efficiency and safety of the system.

flexible coupling

Can flexible couplings be used for both motor-to-shaft and shaft-to-shaft connections?

Yes, flexible couplings can be used for both motor-to-shaft and shaft-to-shaft connections in various applications. The versatility of flexible couplings allows them to adapt to different types of connections and meet the specific requirements of the system.

Motor-to-Shaft Connections:

When connecting a motor to a shaft, a flexible coupling serves as an intermediary component that joins the motor shaft and the driven shaft. Flexible couplings are commonly used in motor-driven systems to accommodate misalignment between the motor and the driven load. In motor applications, flexible couplings help reduce stress and wear on the motor bearings, thus extending the motor’s life and enhancing overall system reliability. They also act as vibration dampeners, minimizing vibrations transmitted from the motor to the driven shaft, and subsequently to connected equipment, ensuring smoother operation.

Shaft-to-Shaft Connections:

In many mechanical systems, such as those in the manufacturing, automation, and power transmission industries, shaft-to-shaft connections are required. A flexible coupling can bridge the gap between two shafts and transmit torque while accommodating misalignment. This type of coupling is commonly used to connect shafts that are not perfectly aligned due to factors like manufacturing tolerances, thermal expansion, or foundation settling. By allowing for misalignment, the flexible coupling protects the connected components from excessive stresses and ensures efficient power transmission.

Versatility and Advantages:

The ability of flexible couplings to handle both motor-to-shaft and shaft-to-shaft connections makes them versatile solutions for a wide range of industrial applications. Some of the advantages of using flexible couplings in these connections include:

  • Minimizing stress and wear on connected components, such as bearings and seals.
  • Compensating for misalignment, ensuring smooth power transmission.
  • Damping vibrations and shock loads, reducing the risk of mechanical failures.
  • Protecting equipment from excessive forces, enhancing system reliability.
  • Simplifying installation and alignment procedures, reducing downtime.
  • Improving overall system performance and operational efficiency.

Applications:

Flexible couplings find applications in a wide range of industries, including manufacturing, material handling, automotive, aerospace, robotics, and more. Whether connecting a motor to a shaft or joining two shafts directly, flexible couplings play a crucial role in enhancing the reliability and efficiency of rotating machinery and mechanical systems.

In conclusion, flexible couplings can effectively serve as connectors for both motor-to-shaft and shaft-to-shaft connections, providing essential misalignment compensation and protection for connected equipment in various industrial applications.

China Custom Manufacturers Multiple Types/Size Flexible Coupling Rubber Shaft Coupling 8A for Excavator Coupling  China Custom Manufacturers Multiple Types/Size Flexible Coupling Rubber Shaft Coupling 8A for Excavator Coupling
editor by CX 2024-02-16

China Custom Rubber Coupling Shaft Coupling Good Quality Flexible Coupling

Product Description

 

Detailed Photos

Related Products

 

 

Company Profile

 

 

Xingtal Chengzhi Seals Co, [td, founded in 2013, is located in Pingxlang County, Xingtal Clty, the rubber sealindustrilal belt. With a long historyof production, the factory covers an are a of 45 certlficatlon. In 2571, it also obtalned theSO9001: 2008 quality system certification. A professional management team, excellent technical talents, and experienced frontline employees have formed a capable team of rubber andplastic employces. “Consolidating, improving, developing, and surpassing” is our CHINAMFG pursult of sincere pople. We wll uphold the corporatephilosophy of”dedication, cooperation, passion, and innovation” and truly implement the policy of “quality first, customer first”. Strive tobecomme an internatjonal first-class component supoorting ente

Test Report

production workshop

FAQ

Q 1. What’s the payment term?
A: We accept T/T 30% deposit and 70% balance against copy of B/L or L/C at sight, West Union,VISA,Paypal is also accepted.

Q 2. What is the normal lead time for product orders?
A: Average lead times for prototype / first article are 1-2 weeks, if tooling is involved, lead time for production tooling is 10 days, average production time after sample approval is 2-3 weeks.

 
Q 3. What is your standard packing?
A: All the goods will be packed by carton box and loaded with pallets. Special packing method can be accepted when needed.

 
Q 4. Could you please tell us the month capacity of your products ?
A: It depends on which model, we produce more than 3000 tons rubber materials per month.

Q 5. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

Q 6. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW,FCA,DDP,DDU,Express Delivery;
Accepted Payment Currency:USD,EUR,CAD,HKD,CNY;
Accepted Payment Type: T/T,MoneyGram,Credit Card,PayPal,Western Union,Cash;
Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi,Italian

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How do flexible couplings handle shaft misalignment in rotating equipment?

Flexible couplings are designed to handle shaft misalignment in rotating equipment, providing several key features that allow them to accommodate misalignment effectively. Here’s how they work:

  • Angular Misalignment: Flexible couplings can handle angular misalignment, which occurs when the axes of the connected shafts are not perfectly aligned. The coupling’s flexible elements allow for slight angular deviation, ensuring that the torque can still be transmitted smoothly between the shafts.
  • Parallel Misalignment: Parallel misalignment occurs when the connected shafts are not perfectly in line but run parallel to each other. Flexible couplings can compensate for this misalignment by utilizing their ability to flex or slide, allowing the shafts to remain connected while maintaining rotational integrity.
  • Axial Misalignment: Axial misalignment refers to the situation where the connected shafts have a slight axial displacement. Some flexible couplings have specific designs to handle axial misalignment, allowing for limited movement along the axial direction without compromising the connection between the shafts.
  • Double Flexing: Certain types of flexible couplings, such as the double-flexing couplings, can accommodate both angular and parallel misalignments simultaneously. These couplings use two sets of flexible elements to achieve this capability, providing a higher degree of misalignment compensation.

Overall, the flexibility of the coupling’s material and design allows it to bend, flex, or slide in response to the misalignment, reducing the stress on the connected equipment and ensuring smooth power transmission. By accommodating misalignment, flexible couplings help prevent premature wear, reduce vibration, and extend the service life of the rotating equipment.

flexible coupling

What are the differences between flexible couplings and rigid couplings in terms of performance?

Flexible couplings and rigid couplings are two distinct types of couplings used in mechanical systems, and they differ significantly in terms of performance and applications.

  • Torsional Flexibility: The primary difference between flexible and rigid couplings lies in their ability to handle misalignments and torsional flexibility. Flexible couplings are designed with elements, such as elastomeric inserts or metal bellows, that can deform or twist to accommodate shaft misalignments, angular offsets, and axial movements. On the other hand, rigid couplings do not have any flexibility and maintain a fixed connection between the shafts, which means they cannot compensate for misalignment.
  • Misalignment Compensation: Flexible couplings can absorb and mitigate misalignment between shafts, reducing stress and wear on connected components. In contrast, rigid couplings require precise alignment during installation, and any misalignment can lead to increased loads on the shafts and bearings, potentially leading to premature failure.
  • Vibration Damping: Flexible couplings, especially those with elastomeric elements, offer damping properties that can absorb and dissipate vibrations. This damping capability reduces the transmission of vibrations and shocks through the drivetrain, improving the overall system performance and protecting connected equipment. Rigid couplings, being solid and without damping elements, do not provide this vibration damping effect.
  • Backlash: Flexible couplings can have some degree of backlash due to their flexibility, particularly in certain designs. Backlash is the play or free movement between connected shafts. In contrast, rigid couplings have minimal or no backlash, providing a more precise and immediate response to changes in rotational direction.
  • Torque Transmission: Rigid couplings are more efficient in transmitting torque since they do not have any flexible elements that can absorb some torque. Flexible couplings, while capable of transmitting substantial torque, may experience some power loss due to the deformation of their flexible components.
  • Applications: Flexible couplings are widely used in applications that require misalignment compensation, damping, and shock absorption, such as pumps, motors, and industrial machinery. On the other hand, rigid couplings are used in situations where precise alignment is critical, such as connecting shafts of well-aligned components or shafts that require synchronous operation, like in some encoder applications.

In summary, flexible couplings excel in applications where misalignment compensation, vibration damping, and shock absorption are required. They are more forgiving in terms of alignment errors and can accommodate dynamic loads. Rigid couplings, on the other hand, are used in situations where precise alignment and zero backlash are essential, ensuring direct and immediate power transmission between shafts.

flexible coupling

How do you select the appropriate flexible coupling for a specific application?

Choosing the right flexible coupling for a specific application requires careful consideration of various factors to ensure optimal performance, reliability, and longevity. Here are the key steps to select the appropriate flexible coupling:

  1. Application Requirements: Understand the specific requirements of the application, including torque and speed specifications, misalignment conditions, operating environment (e.g., temperature, humidity, and presence of corrosive substances), and space limitations.
  2. Torque Capacity: Determine the maximum torque that the coupling needs to transmit. Choose a flexible coupling with a torque rating that exceeds the application’s requirements to ensure a safety margin and prevent premature failure.
  3. Misalignment Compensation: Consider the type and magnitude of misalignment that the coupling needs to accommodate. Different coupling designs offer varying degrees of misalignment compensation. Select a coupling that can handle the expected misalignment in the system.
  4. Vibration Damping: If the application involves significant vibrations, choose a flexible coupling with good damping properties to reduce vibration transmission to connected equipment and improve system stability.
  5. Environmental Factors: Take into account the environmental conditions in which the coupling will operate. For harsh environments, consider couplings made from corrosion-resistant materials.
  6. Torsional Stiffness: Depending on the application’s requirements, decide on the desired torsional stiffness of the coupling. Some applications may require high torsional stiffness for precise motion control, while others may benefit from a more flexible coupling for shock absorption.
  7. Cost and Life-Cycle Considerations: Evaluate the overall cost-effectiveness of the coupling over its expected life cycle. Consider factors such as initial cost, maintenance requirements, and potential downtime costs associated with coupling replacement.
  8. Manufacturer Recommendations: Consult coupling manufacturers and their technical specifications to ensure the selected coupling is suitable for the intended application.
  9. Installation and Maintenance: Ensure that the selected flexible coupling is compatible with the equipment and shaft sizes. Follow the manufacturer’s installation guidelines and recommended maintenance practices to maximize the coupling’s performance and longevity.

By following these steps and carefully evaluating the application’s requirements, you can select the most appropriate flexible coupling for your specific needs. The right coupling choice will lead to improved system performance, reduced wear on equipment, and enhanced overall reliability in various mechanical systems and rotating machinery.

China Custom Rubber Coupling Shaft Coupling Good Quality Flexible Coupling  China Custom Rubber Coupling Shaft Coupling Good Quality Flexible Coupling
editor by CX 2024-02-11

China Best Sales Original Excavator Parts Coupling CF-a Series Rubber Flexible Torsionally Steel Universal Shaft Coupling for Centaflex

Product Description

Original Excavator Parts Coupling CF-a Series Rubber Flexible Torsionally Steel Universal Shaft Coupling for Centafle

Product Display:                                                                                                                                                        
 

 Model  Outer Diameter(mm)  Inner Diameter(mm)  Hight(mm)  Diameter from Hole to Hole(mm)  Weight(kg)
4A/4AS 103 53 28 68 0.18
8A/8AS 134 71 32 88 0.26
16A/16AS 160 80 41 110 0.54
22A/22AS 165 86 41 128 0.66
25A/25AS 183 102 46 123 0.78
28A/AS         0.88
30A/30AS 213 117 57 145 1.28
50A/50AS 220 123 57 165 1.48
80A/80As 225 120 65 167 1.92
90A/90As 278 148 70 190 3.1
140A/140AS 285 151 71 215 3.42
250A/250AS         6.6
284B         6.34
4, 4655134, EX3, ZAX460MTH, ZAX480MTH, 4636444, ZX470-3, EX470, ZAX470, ZAX450-3, ZAX450-3F, ZAX5, Atlas Copco,,

 

AC 385,  AC 396, AC415, AC416, AC 455, AC485,

AC 486,  AC86, AC836, AC976, AC 6-712, 4DNV98

Chinese Brand Excavators: 

LGK: 6085, 200

CLG 60, 205, 220, 906, 907, 908, 920, 925, 936, CLG906C, CLG922LG

YC50-8, YC60-8, YC60-8, YC135-8, YC230, YC230-8, YC230LC-8, YC360, YC85, YC50,  YC85-7, YC60-7, YC135

SW50, 60, 70, 150

FR85-7, FR65, FR80, FR150-7,

ZL 60, 205, 230, 360 

SY55, SY60, SY215, SY230, SY210, SY220, SY310 
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How does a flexible coupling help in power transmission efficiency?

Flexible couplings play a crucial role in improving power transmission efficiency in various mechanical systems. Here are the ways in which flexible couplings contribute to enhanced efficiency:

  • Misalignment Compensation: In real-world applications, it is challenging to achieve perfect alignment between shafts due to manufacturing tolerances, thermal expansion, or external forces. Flexible couplings can accommodate both angular and parallel misalignments between the driving and driven shafts. By doing so, they ensure that the torque is transmitted smoothly and efficiently despite misalignment, reducing power losses due to misaligned shafts.
  • Vibration Damping: Vibrations in mechanical systems can lead to energy losses and premature wear of components. Flexible couplings with vibration-damping properties can absorb and dampen vibrations generated during operation. By reducing the transmission of vibrations, these couplings help to maintain power transmission efficiency and extend the lifespan of connected equipment.
  • Shock Load Absorption: During start-up or sudden changes in operating conditions, equipment may experience shock loads. Flexible couplings are designed to absorb and cushion these shock loads, preventing sudden impacts on the system. By minimizing the shock load’s effect, flexible couplings contribute to smoother power transmission and reduced stress on components.
  • Torsional Stiffness: While flexible couplings allow for misalignment compensation, they still exhibit a certain degree of torsional stiffness. This stiffness ensures that the majority of the torque is efficiently transmitted from the driving to the driven shaft, minimizing power losses due to deformation or bending of the coupling.
  • Reduced Friction and Wear: Flexible couplings typically have a simple design with fewer moving parts. This simplicity leads to reduced friction and wear compared to more complex coupling types. Lower friction means less energy dissipation, resulting in improved power transmission efficiency.
  • Compatibility with Various Applications: Flexible couplings come in a wide range of designs and materials to suit different applications. Whether it’s high-speed machinery, heavy-duty equipment, or precision systems, there are flexible coupling options optimized for each use case. Selecting the appropriate coupling for the specific application ensures efficient power transmission.

In summary, flexible couplings enhance power transmission efficiency by compensating for misalignment, damping vibrations, absorbing shock loads, providing torsional stiffness, reducing friction and wear, and offering compatibility with diverse applications. The combination of these features contributes to improved overall system efficiency and helps optimize the performance of mechanical systems.

flexible coupling

What are the differences between single and double flexible coupling designs?

Single and double flexible couplings are two common designs used for power transmission in various mechanical systems. Here are the main differences between the two:

  • Design: The primary difference lies in their configuration. A single flexible coupling consists of one flexible element connecting two shafts, while a double flexible coupling, also known as a two-piece flexible coupling, uses two flexible elements with an intermediate shaft in between. The double flexible coupling resembles two single couplings connected in series.
  • Torsional Flexibility: Single flexible couplings typically provide greater torsional flexibility than double flexible couplings. The presence of an intermediate shaft in the double coupling design adds some rigidity and reduces the overall torsional flexibility of the system.
  • Compensation of Misalignment: Both single and double flexible couplings can compensate for angular and parallel misalignment between shafts. However, due to its additional flexible element, the double flexible coupling may have slightly better misalignment compensation capabilities.
  • Length and Space: Single flexible couplings are generally shorter in length compared to double flexible couplings. The double flexible coupling’s design requires additional space to accommodate the intermediate shaft, making it longer than the single coupling.
  • Shaft Separation: Single flexible couplings connect the two shafts directly without any intermediate components, while the double flexible coupling separates the shafts using an intermediate shaft. This shaft separation in the double design can be advantageous in certain applications.
  • Stiffness: The double flexible coupling tends to be slightly stiffer than the single flexible coupling due to the presence of the intermediate shaft, which may affect its ability to absorb vibrations and shock loads.
  • Application: Single flexible couplings are commonly used in various applications, including pumps, compressors, fans, and general power transmission systems. Double flexible couplings are often preferred in applications where a higher level of torsional stiffness is required, such as certain industrial machinery.

Both single and double flexible coupling designs have their advantages and are suitable for different types of machinery and power transmission requirements. The choice between the two depends on factors such as the specific application, the level of misalignment compensation needed, the available space, and the desired torsional flexibility for the system.

flexible coupling

How does a flexible coupling impact the overall reliability of connected equipment?

A flexible coupling significantly impacts the overall reliability of connected equipment in several ways:

  • Misalignment Compensation: Flexible couplings can accommodate both angular and parallel misalignment between connected shafts. By allowing for misalignment, the coupling reduces the stress and wear on bearings, seals, and other rotating components. This feature prevents premature failure of these components, contributing to improved reliability and extended equipment lifespan.
  • Vibration Damping: Flexible couplings possess inherent damping properties due to their elastomeric or flexible elements. These elements absorb and dissipate vibrations generated during the operation of machinery. By dampening vibrations, the coupling protects the connected equipment from excessive oscillations, reducing fatigue and preventing mechanical failures. This enhanced vibration control increases the reliability of the system.
  • Shock Load Absorption: In applications with sudden load variations or shock loads, such as in heavy machinery or high-speed equipment, a flexible coupling acts as a shock absorber. It can absorb and dissipate the impact energy, protecting the machinery from damage caused by sudden loads. The ability to absorb shock loads contributes to the overall reliability of the connected equipment.
  • Reduced Wear and Tear: The flexibility of the coupling minimizes stress and wear on rotating equipment. It allows for slight movements and misalignments, reducing friction and stress on bearings and other critical components. This reduction in wear and tear lowers the frequency of maintenance and replacement, increasing the overall reliability of the equipment.
  • Compensation for Thermal Expansion: Temperature changes in machinery can lead to thermal expansion or contraction of shafts. A flexible coupling can compensate for these thermal effects, ensuring that the machinery remains properly aligned even as temperature conditions fluctuate. This compensation prevents binding and misalignment, promoting reliable performance.
  • Protection Against Overloads: Flexible couplings help protect connected equipment from overloads and torsional vibrations. They act as a mechanical fuse, disconnecting the driveline when an overload occurs, thus preventing damage to expensive machinery. This safety feature enhances the overall reliability and reduces the risk of catastrophic failures.
  • Easy Maintenance and Alignment: Flexible couplings are designed for easy installation and alignment. This feature simplifies maintenance procedures, making it easier to inspect and replace couplings when necessary. Properly aligned couplings lead to improved equipment performance and longevity, enhancing overall reliability.

By compensating for misalignment, damping vibrations, absorbing shock loads, reducing wear and tear, and providing other protective features, a flexible coupling significantly improves the reliability of connected equipment. It extends the lifespan of critical components, minimizes downtime, and ensures smooth and efficient operation, making it a valuable component in various industrial applications.

China Best Sales Original Excavator Parts Coupling CF-a Series Rubber Flexible Torsionally Steel Universal Shaft Coupling for Centaflex  China Best Sales Original Excavator Parts Coupling CF-a Series Rubber Flexible Torsionally Steel Universal Shaft Coupling for Centaflex
editor by CX 2024-02-05

China Hot selling High Abrasion Resistant Flexible Rubber Jaw Shaft Star Coupling Element PU Coupling Spider

Product Description

Rubber Spider Coupling Characteristic: 

1. Performance Shock Absorber
2. Low Compression Deformation
3. Corrosion Resistance
4. Oil Resistance
5. High Pressure Resistance
6. Wear Resistance

Rubber Material Compare

E – Excellent          G – Good          F – Fair          P – Poor          
Material Properties
Property NBR  EPDM CR Silicone FKM NR SBR PU HNBR FVMQ IIR
Abrasion Resistance G G G P G E E E G P G
Acid Resistance F G F F E F F P E F G
Chemical Resistance F E F G E F F F G E E
Cold Resistance G G F E P G G G G G G
Compression Set Resistance G G F G E G G F G G F
Dynamic Properties G G F P G E E E G P F
Electrical Properties F G F E F G G F F E G
Elongation G G G F F F F F G F G
Flame Resistance P P G F E P P P P G P
Heat Resistance G G G E E F F F E E G
Impermeability G G G P G F F G G P E
Oil Resistance E P F F E P P G E G P
Ozone Resistance P E G E E P P E G E G
Tear Resistance F G F P F G G G F P G
Tensile Strength G G G P G E E E E F G
Water Resistance G E F G F G G P E F G
Weather Resistance F E E E E F F E G E G

Why Us:

We have a fully-equipped workshop that meets ISO 9001:2015 and IATF 16949:2016 requirements. All products are compliant
with FDA, WRAS, UL, RoHS and REACH standards, and meet DIN, JIS and ASTM regulations. Material report and dimension
checking report are available.

1. Quality Approvals. More than 15 years professional manufacture experience.
2. Experienced Staff and Service.   Professional R&D team, production team, sales team, after-sales service team.
3. Product Performance and affordable cost.   Superior performance with most competitive price.
4. Prompt Delivery.   Faster delivery time. 
5. Small Orders Accepted.
 

Material Rubber Metal Bonded, NR Rubber, SBR Rubber, Carbon Steel, Stailess Steel
Material Report FDA, ROHS, UL, WRAS and REACH
Dimension Standard Sizes or As per customers’ Requirement
Certifications ISO9001,IATF16949,ISO14001
Color Any colors according to PANTONE or RAL
Surface Finish Texture (VDI/MT standard, or made to client’s sample), polished (high polish, mirror polish), smooth, painting, powder coating, printing, electroplating etc.
Service Custom Made or OEM and ODM
Free Samples Okay
Production Ways CAD Drawing, 3D Files or Samples
Production Capacity 200T,300T and 500T Compressing Molding, Injection Molding, Auto Vacuum Vulcanizing, Plastic Injection, and Extrusion
Supplying Capacity One Million Pieces/ Month
Tolerance Generally±0.05mm or Better
QC PPAP, In House Control, Third Party Inspection Institution such SGS, TUV
Lead Time 15 Days for Molding, 15-20 Days for Series Production
Application Industry Machinery,Automotive,Mechanical Equipment, Construction, House Application,
Medical Machine
More Parts

Grommet, sleeve, feet, gasket, wheel, bellow, cap, dust cover, pad, washer, 

Strip, plug, stopper, grip, seal, bushing, bumper, blocks, and anti vibration mounts etc.

Supplying Standard and Customized Rubber & Plastic Parts
Established in 2004, Xihu (West Lake) Dis. Rubber is specialized in providing quality customized rubber molding,
extrusion parts, plastic injection products and some standard parts.

Meeting Various Standards
We have a fully-equipped workshop that meets ISO 9001:2015 and IATF 16949:2016 requirements.
Our products are compliant with FDA, WRAS, UL, RoHS and REACH standards, and meet DIN, JIS
, BS and ASTM regulations.

Parts include, but are not limited to:
Grommet, sleeve, feet, gasket, wheel, bellow, cap, dust cover, pad, washer, Strip, plug, stopper, grip,
seal, bushing, bumper, blocks, and anti vibration mounts etc.

FAQ

1. What types of rubber do you use?

Xihu (West Lake) Dis. Rubber has extensive experience in a vast range of rubber, including: Natural Rubber, SBR, CR, NBR, HNBR,
EPDM, Silicone Rubber, FPM, ACM, FK etc.

2. What types of plastic do you use?
Xihu (West Lake) Dis. Rubber has extensive experience in a vast range of plastics, including: ABS, Polypropylene (PP), PVC, POM,
PE, PEEK, Polyamide (PA) Nylons, PBT, etc.

3. What services do you provide?
We offer a broad range of services, including, Custom Rubber Molding, Liquid Injection Molding, Rubber Extrusion, and
Rubber/Plastic to Metal Bonded Parts.

4. Why us?
4.1 More than 15 years professional manufacture experience.
4.2 Professional R&D team, production team, sales team, after-sales service team.
4.3 Superior performance with most competitive price.
4.4 Faster delivery time.

5. Perfect quality control process
5.1 Raw material inspection 
      All raw materials before warehousing must be tested, and the corresponding physical property report shall be issued,
and compared with the physical property report of raw materials. Only when the test values of the 2 physical property
reports are consistent, can they be warehoused.

5.2 Mold inspection
      After mold development or cleaning, we will check the full size of the mold to ensure that the quality of each cavity is
the same.

5.3 Product inspection
      In the process of product production, inspectors regularly inspect the semi-finished products to ensure the rationality
of the process and control the defective rate within a reasonable range.

5.4 Finished product inspection
      The double inspection can ensure that the product appearance and size are 100% qualified.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the common installation mistakes to avoid when using flexible couplings?

Proper installation is crucial for the reliable and efficient performance of flexible couplings. Here are some common installation mistakes to avoid:

  • Incorrect Alignment: One of the most critical installation errors is improper alignment of the driving and driven shafts. Misalignment can lead to premature wear, increased vibration, and reduced power transmission efficiency. It is essential to align the shafts within the specified tolerances provided by the coupling manufacturer.
  • Over-Tightening: Applying excessive torque to the coupling’s fasteners during installation can cause damage to the flexible elements and decrease their ability to accommodate misalignment. It is essential to follow the recommended torque values provided by the coupling manufacturer to ensure proper clamping without over-tightening.
  • Improper Lubrication: Some flexible couplings may require lubrication of their flexible elements or moving parts. Failure to lubricate as recommended can lead to increased friction, wear, and reduced service life of the coupling.
  • Using Damaged Couplings: Before installation, it is crucial to inspect the flexible coupling for any signs of damage or defects. Using a damaged coupling can lead to premature failure and potential safety hazards. If any damage is detected, the coupling should be replaced with a new one.
  • Wrong Coupling Selection: Selecting the wrong type or size of the coupling for the application can result in inadequate performance, premature wear, and possible coupling failure. It’s essential to consider factors such as torque requirements, speed, misalignment compensation, and environmental conditions when choosing the appropriate coupling.
  • Ignoring Operating Conditions: Failure to consider the specific operating conditions, such as temperature, humidity, and exposure to corrosive substances, can lead to accelerated wear and reduced coupling lifespan. Choosing a coupling that is compatible with the operating environment is essential.
  • Ignoring Manufacturer Guidelines: Each flexible coupling comes with specific installation guidelines provided by the manufacturer. Ignoring these guidelines can lead to suboptimal performance and potential safety issues. It is crucial to carefully follow the manufacturer’s instructions during installation.

By avoiding these common installation mistakes and following best practices, the reliability, efficiency, and service life of flexible couplings can be maximized, leading to improved performance of the mechanical system as a whole.

flexible coupling

What are the challenges of using flexible couplings in heavy-duty industrial machinery?

Using flexible couplings in heavy-duty industrial machinery can offer numerous benefits, such as reducing shock loads, accommodating misalignment, and protecting connected equipment. However, there are several challenges that need to be addressed to ensure successful and reliable performance:

  • Torsional Stiffness: Heavy-duty machinery often requires high torsional stiffness to maintain accurate rotational timing and prevent energy losses. Selecting a flexible coupling with the appropriate level of torsional stiffness is crucial to avoid excessive torsional deflection and maintain power transmission efficiency.
  • High Torque and Speed: Heavy-duty machinery typically operates at high torque and speed levels. The flexible coupling must be capable of handling these intense loads without exceeding its torque or speed ratings, which could lead to premature failure.
  • Alignment and Runout: Proper shaft alignment is critical for the reliable operation of flexible couplings in heavy-duty machinery. Misalignment can cause additional stresses and premature wear on the coupling and connected components. Achieving and maintaining precise alignment is essential to maximize coupling performance.
  • Environmental Conditions: Heavy-duty industrial machinery often operates in harsh environments with exposure to dust, dirt, chemicals, and extreme temperatures. Flexible couplings must be constructed from durable and corrosion-resistant materials to withstand these conditions and maintain their functionality over time.
  • Impact and Shock Loads: Some heavy-duty machinery may experience frequent impact and shock loads, which can lead to fatigue and failure in the flexible coupling. Choosing a coupling with high shock load capacity and fatigue resistance is vital to ensure longevity and reliability.
  • Regular Maintenance: Heavy-duty machinery demands rigorous maintenance schedules to monitor the condition of flexible couplings and other components. Timely inspection and replacement of worn or damaged couplings are essential to prevent unexpected downtime and costly repairs.
  • Coupling Selection: Properly selecting the right type of flexible coupling for the specific application is crucial. Different types of couplings offer varying levels of misalignment compensation, torque capacity, and environmental resistance. Choosing the wrong coupling type or size can lead to inefficiencies and premature failures.

Despite these challenges, using flexible couplings in heavy-duty industrial machinery can provide significant advantages. By carefully considering the application requirements, selecting high-quality couplings, and implementing regular maintenance protocols, engineers can overcome these challenges and enjoy the benefits of flexible couplings, including increased equipment lifespan, reduced maintenance costs, and improved overall system performance.

flexible coupling

Can flexible couplings be used for both motor-to-shaft and shaft-to-shaft connections?

Yes, flexible couplings can be used for both motor-to-shaft and shaft-to-shaft connections in various applications. The versatility of flexible couplings allows them to adapt to different types of connections and meet the specific requirements of the system.

Motor-to-Shaft Connections:

When connecting a motor to a shaft, a flexible coupling serves as an intermediary component that joins the motor shaft and the driven shaft. Flexible couplings are commonly used in motor-driven systems to accommodate misalignment between the motor and the driven load. In motor applications, flexible couplings help reduce stress and wear on the motor bearings, thus extending the motor’s life and enhancing overall system reliability. They also act as vibration dampeners, minimizing vibrations transmitted from the motor to the driven shaft, and subsequently to connected equipment, ensuring smoother operation.

Shaft-to-Shaft Connections:

In many mechanical systems, such as those in the manufacturing, automation, and power transmission industries, shaft-to-shaft connections are required. A flexible coupling can bridge the gap between two shafts and transmit torque while accommodating misalignment. This type of coupling is commonly used to connect shafts that are not perfectly aligned due to factors like manufacturing tolerances, thermal expansion, or foundation settling. By allowing for misalignment, the flexible coupling protects the connected components from excessive stresses and ensures efficient power transmission.

Versatility and Advantages:

The ability of flexible couplings to handle both motor-to-shaft and shaft-to-shaft connections makes them versatile solutions for a wide range of industrial applications. Some of the advantages of using flexible couplings in these connections include:

  • Minimizing stress and wear on connected components, such as bearings and seals.
  • Compensating for misalignment, ensuring smooth power transmission.
  • Damping vibrations and shock loads, reducing the risk of mechanical failures.
  • Protecting equipment from excessive forces, enhancing system reliability.
  • Simplifying installation and alignment procedures, reducing downtime.
  • Improving overall system performance and operational efficiency.

Applications:

Flexible couplings find applications in a wide range of industries, including manufacturing, material handling, automotive, aerospace, robotics, and more. Whether connecting a motor to a shaft or joining two shafts directly, flexible couplings play a crucial role in enhancing the reliability and efficiency of rotating machinery and mechanical systems.

In conclusion, flexible couplings can effectively serve as connectors for both motor-to-shaft and shaft-to-shaft connections, providing essential misalignment compensation and protection for connected equipment in various industrial applications.

China Hot selling High Abrasion Resistant Flexible Rubber Jaw Shaft Star Coupling Element PU Coupling Spider  China Hot selling High Abrasion Resistant Flexible Rubber Jaw Shaft Star Coupling Element PU Coupling Spider
editor by CX 2024-02-01

China wholesaler Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Main products
Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings.
Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.
Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. However, due to the strength of elastic elements, the transmitted torque is generally inferior to that of flexible couplings without elastic elements. Common types include elastic sleeve pin couplings, elastic pin couplings, quincunx couplings, tire type couplings, serpentine spring couplings, spring couplings, etc

Coupling performance

1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

How to select the appropriate coupling type

The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.

If you cannot determine the type, you can contact our professional engineer

Related products

 

Company Profile

 

Our Equipments

Main production equipment:
Large lathe, surface grinder, milling machine, gear shaper, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, casting equipment, etc.
Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector, special detection, modular fixture (self-made), etc.

Machining equipments
Heat equipment

 

Our Factory
Application – Photos from our partner customers

Company Profile
Our leading products are mechanical transmission basic parts – couplings, mainly including universal couplings, drum gear couplings, elastic couplings and other 3 categories of more than 30 series of varieties. It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.
Our factory takes the basic parts of national standards as the benchmark, has more than 40 years of coupling production experience, takes “scientific management, pioneering and innovation, ensuring quality and customer satisfaction” as the quality policy, and aims to continuously provide users with satisfactory products and services. The production is guided by reasonable process, and the ISO9001:2015 quality management system standard is strictly implemented. We adhere to the principle of continuous improvement and innovation of coupling products. In recent years, it has successfully developed 10 national patent products such as SWF cross shaft universal coupling, among which the double cross shaft universal joint has won the national invention patent, SWF cross shaft universal coupling has won the new product award of China’s general mechanical parts coupling industry and the ZHangZhoug Province new product science and technology project.
Our factory has strong technical force, excellent process equipment, complete professional production equipment, perfect detection means, excellent after-sales service, various products and complete specifications. At the same time, we can provide the design and manufacturing of special non-standard products according to the needs of users. Our products sell well at home and abroad, and are trusted by the majority of users. We sincerely welcome friends from all walks of life at home and abroad to visit and negotiate for common development.p

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible gear coupling

Flexibility of Flexible Gear Couplings in High-Temperature or Corrosive Environments

Flexible gear couplings are designed to operate in a wide range of environments, including high-temperature and corrosive conditions. Their construction and choice of materials allow them to withstand challenging industrial settings. Here’s how flexible gear couplings handle such conditions:

High-Temperature Environments:

Flexible gear couplings are often manufactured using heat-resistant materials, such as alloy steel or stainless steel. These materials can withstand elevated temperatures commonly found in various industrial processes. The design of the coupling allows for efficient heat dissipation, preventing the buildup of excess heat and ensuring reliable operation.

It is crucial to choose the appropriate material and lubrication for the specific high-temperature application to avoid premature wear and failure. Regular maintenance and monitoring are also essential to detect any signs of heat-related stress and take appropriate action promptly.

Corrosive Environments:

Flexible gear couplings can also be equipped with corrosion-resistant materials, such as stainless steel or nickel alloys, to withstand corrosive environments. These materials offer excellent resistance to chemical reactions and protect the coupling from degradation caused by exposure to aggressive substances.

The sealing mechanisms in some flexible gear couplings provide an additional layer of protection, preventing corrosive agents from entering the critical components of the coupling. Proper lubrication and maintenance are essential in corrosive environments to ensure the coupling’s longevity and reliable performance.

However, it is crucial to choose a flexible gear coupling with the appropriate materials and coatings that suit the specific corrosive environment in which it will operate. Working with reputable manufacturers or suppliers with experience in providing couplings for similar conditions is essential to ensure the coupling’s reliability and long-term performance in challenging environments.

In summary, flexible gear couplings can be successfully used in high-temperature and corrosive environments due to their robust construction, choice of materials, and efficient heat dissipation mechanisms. Proper selection, installation, and maintenance are key factors in maximizing the performance and lifespan of the coupling in such conditions.

flexible gear coupling

Enhanced Performance of Flexible Gear Couplings through Gear Teeth Flexibility

The flexibility of gear teeth in flexible gear couplings plays a crucial role in enhancing their overall performance. This flexibility allows the coupling to compensate for misalignments and absorb shocks and vibrations, providing several key benefits:

  • Misalignment Compensation: As the machinery operates, shafts may experience angular, parallel, or axial misalignments due to various factors like thermal expansion, foundation settlement, or manufacturing tolerances. The flexible gear teeth in the coupling can accommodate these misalignments by slight bending or elastic deformation, ensuring the smooth transmission of torque between the shafts despite their misaligned positions.
  • Vibration Damping: During operation, rotating equipment can generate vibrations caused by uneven loads, resonance, or other factors. The flexible gear teeth act as shock absorbers, dampening these vibrations and preventing them from propagating throughout the system. This helps reduce noise, wear, and stress on the machinery components, contributing to smoother and quieter operation.
  • Load Distribution: The flexibility of the gear teeth allows the coupling to distribute the transmitted load evenly across the entire tooth surface. This even load distribution reduces wear and fatigue on the gear teeth, increasing the coupling’s overall lifespan and reliability.
  • Overload Protection: In case of sudden shock loads or overloads, the flexible gear teeth can absorb part of the impact, protecting the connected equipment from damage. This feature is especially important in applications with variable loads or potential shock events.
  • Torsional Flexibility: The gear teeth’s flexibility enables the coupling to handle torsional movements, ensuring that torque is smoothly transferred between the shafts even if they are not perfectly aligned. This feature helps maintain constant velocity transmission, critical in precision systems.

Overall, the flexibility of gear teeth in flexible gear couplings allows these couplings to adapt to changing conditions, provide protection against unexpected forces, and improve the performance and reliability of mechanical power transmission systems.

flexible gear coupling

Industry Standards and Certifications for Flexible Gear Couplings

Flexible gear couplings are essential components in mechanical power transmission systems, and there are industry standards and certifications that govern their design, manufacturing, and performance. Some of the most commonly recognized standards and certifications for flexible gear couplings include:

  • ISO 9001: This certification ensures that the manufacturer follows a quality management system that meets international standards, ensuring consistent and reliable production of flexible gear couplings.
  • AGMA Standards: The American Gear Manufacturers Association (AGMA) has published various standards related to gear couplings, including AGMA 9002 for flexible couplings, which provides guidelines for design, selection, installation, and lubrication.
  • API Standards: The American Petroleum Institute (API) has established standards for couplings used in the oil and gas industry. API 671 specifically covers the requirements for special-purpose couplings, including gear couplings, used in petroleum, chemical, and gas industry services.
  • CE Marking: The CE marking indicates that the flexible gear coupling complies with the European Union’s health, safety, and environmental protection standards, making it eligible for sale within the EU market.
  • ATEX Certification: If the flexible gear coupling is intended for use in potentially explosive atmospheres, it may require ATEX certification, which ensures compliance with European Union directives for explosive atmosphere protection.

When selecting a flexible gear coupling, it is essential to verify if it conforms to the necessary industry standards and certifications to ensure the coupling’s performance, safety, and reliability in your specific application.

China wholesaler Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  China wholesaler Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling
editor by CX 2023-12-27