Tag Archives: flexible coupling

China best Premium Plastic Flexible Coupling PVC Universal Coupling PVC Pipe Coupling Fitting UPVC Reducing Coupling

Product Description

High Quality

Plastic Pipe Coupling
PVC Pipe Coupling Fitting
UPVC Reducing Coupling
PVC Tube Fitting Coupling
Plastic Flexible Coupling
UPVC Universal Coupling
PN16 Large Diameter Fitting DN15mm – DN400mm

High Quality

Plastic Pipe Coupling
PVC Reducing Coupling Socket
UPVC Pressure Pipe Coupling for Water Supply
DIN Standard
1.0MPa 1.2MPa 1.6MPa

High Quality

Plastic Pipe Coupling
PVC Reducing Coupling Socket
UPVC Pressure Pipe Coupling for Water Supply
DIN Standard
PN10

High Quality

PVC Pipe Fitting for Water Supply DIN Standard Dia.20mm to Dia.500mm PN10

Features
Water Supply
Material : PVC-U
Standard : DIN Standard
Connection : Solvent Joint
SIZE : 20 mm ~ 400 mm
Working Pressure : 1.6 MPa ( PN16 )
Color : Grey 

We can supply

Large Diameter
PVC Pipe Fitting

DIN Standard PN10 & PN16 Series for Water Supply
Grey Color 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

Can flexible couplings be used in hydraulic and pneumatic systems?

Yes, flexible couplings can be used in both hydraulic and pneumatic systems to connect various components and transmit power or motion. However, the selection of flexible couplings for these systems depends on specific application requirements and operating conditions.

Hydraulic Systems:

  • Compensating Misalignment: In hydraulic systems, flexible couplings are used to compensate for misalignment between the driving and driven components, such as pumps, motors, and actuators. Misalignment can occur due to variations in the mounting or movement of components. The flexibility of the coupling allows it to accommodate misalignment while transmitting torque efficiently.
  • Vibration Damping: Hydraulic systems can generate vibrations during operation, which can affect the performance and lifespan of connected components. Flexible couplings with vibration-damping properties help reduce the transmission of vibrations, providing smoother operation and minimizing wear on components.
  • Reducing Shock Loads: Flexible couplings absorb and dampen shock loads that may occur in hydraulic systems during rapid starts, stops, or pressure fluctuations. By absorbing these shock loads, the coupling protects connected components from potential damage.
  • Corrosion Resistance: Hydraulic systems may operate in environments with exposure to hydraulic fluids, which can be corrosive. Flexible couplings made of materials resistant to corrosion, such as stainless steel or specific polymers, are suitable for such applications.
  • High Torque Transmission: Hydraulic systems often require high torque transmission between the power source and the driven components. Flexible couplings can handle high torque levels while accommodating angular and axial misalignments.

Pneumatic Systems:

  • Compensation for Misalignment: In pneumatic systems, flexible couplings provide compensation for misalignment between components, such as pneumatic cylinders, valves, and rotary actuators. The ability to accommodate misalignment ensures smooth operation and reduces the risk of mechanical stress on the system.
  • Minimal Lubrication: Some flexible couplings designed for pneumatic systems require little to no lubrication, making them suitable for applications where oil or grease contamination is undesirable.
  • Low Inertia: Pneumatic systems often require components with low inertia to achieve rapid response times. Flexible couplings with low mass and low inertia help maintain the system’s responsiveness and efficiency.
  • High Torque Transmission: Pneumatic systems can demand high torque transmission between components, such as in pneumatic rotary actuators. Flexible couplings can transmit torque effectively while compensating for potential misalignments.
  • Corrosion Resistance: Pneumatic systems operating in harsh environments may be exposed to moisture or chemicals. Flexible couplings made of corrosion-resistant materials are ideal for such conditions.

Overall, flexible couplings are versatile components that can be used in a wide range of hydraulic and pneumatic applications. When selecting a flexible coupling for a specific system, it’s essential to consider factors such as misalignment compensation, vibration damping, shock absorption, corrosion resistance, torque transmission capability, and compatibility with the system’s operating conditions.

flexible coupling

Can flexible couplings be used in high-temperature environments, such as furnaces and kilns?

Flexible couplings can be used in high-temperature environments, such as furnaces and kilns, but the selection of the appropriate coupling is crucial to ensure reliable performance and longevity under these extreme conditions. Here are some key considerations:

  • Material Selection: The choice of materials is critical when using flexible couplings in high-temperature applications. Look for couplings made from heat-resistant materials that can withstand the elevated temperatures without experiencing significant degradation. Common materials used for high-temperature couplings include stainless steel, high-temperature alloys, and certain types of elastomers designed for heat resistance.
  • Lubrication: High temperatures can cause lubricants to break down or evaporate more quickly. Some flexible couplings may require specialized high-temperature lubricants to ensure smooth operation and reduce wear at elevated temperatures. Check the manufacturer’s recommendations for lubrication in high-temperature environments.
  • Thermal Expansion: In high-temperature applications, the equipment and shafts may experience thermal expansion, leading to misalignment. Flexible couplings with higher misalignment capabilities may be necessary to accommodate these thermal effects and prevent additional stress on the system.
  • Torsional Stiffness: Consider the required torsional stiffness for the specific application. In high-temperature environments, couplings may experience changes in stiffness due to temperature variations. It is essential to choose a coupling with appropriate torsional characteristics for the intended operating temperature range.
  • Application Specifics: Evaluate the specific operating conditions of the furnace or kiln, including the maximum and fluctuating temperatures, vibration levels, and potential exposure to chemicals or other harsh elements. Choose a coupling that can withstand these conditions without compromising performance or safety.
  • Coupling Type: Different types of flexible couplings offer varying degrees of heat resistance and performance capabilities. For example, certain types of disc couplings or metal bellows couplings are more suitable for high-temperature environments due to their robust construction and resistance to heat.
  • Regular Maintenance: In high-temperature applications, couplings may be subject to more stress and wear. Regular inspection and maintenance are essential to monitor the coupling’s condition, lubrication, and alignment to ensure it continues to function optimally in the challenging environment.

Overall, flexible couplings can be utilized in high-temperature environments, but it is vital to choose a coupling specifically designed and rated for these conditions. Working closely with coupling manufacturers and considering the specific demands of the application will help ensure that the selected coupling can handle the challenges posed by furnaces, kilns, and other high-temperature equipment, providing reliable power transmission and contributing to the overall efficiency and safety of the system.

flexible coupling

Can you explain the different types of flexible coupling designs available?

There are several types of flexible coupling designs available, each with its unique construction and characteristics. These designs are tailored to meet specific application requirements and address different types of misalignment and torque transmission needs. Here are some of the most common types of flexible couplings:

  • Jaw Couplings: Jaw couplings consist of two hubs with curved jaws and an elastomer spider placed between them. The spider acts as a flexible element and can compensate for angular and parallel misalignment. Jaw couplings are widely used in various industrial applications due to their simple design and effectiveness in handling misalignment and vibration damping.
  • Disc Couplings: Disc couplings use thin metallic discs with a series of alternating slits and flanges to connect the shafts. The disc coupling design allows for excellent misalignment compensation, including angular, parallel, and axial misalignment. Disc couplings are known for their high torsional stiffness and precise torque transmission capabilities.
  • Gear Couplings: Gear couplings consist of toothed hubs connected by an external sleeve with gear teeth. They are well-suited for applications with high torque and moderate misalignment. Gear couplings offer good misalignment compensation and high torque capacity, making them popular in heavy-duty industrial applications.
  • Beam Couplings: Beam couplings use a single piece of flexible material, often a metal beam, to connect the shafts. The material’s flexibility allows for angular and axial misalignment compensation. Beam couplings are compact, lightweight, and provide low inertia, making them suitable for applications with high-speed requirements.
  • Bellows Couplings: Bellows couplings consist of a bellows-like flexible structure that connects the two hubs. They can compensate for angular, parallel, and axial misalignment. Bellows couplings are known for their high torsional stiffness and ability to maintain constant velocity transmission.
  • Oldham Couplings: Oldham couplings use three discs, with the middle one having a perpendicular slot. This design allows for angular misalignment compensation while transmitting torque between the hubs. Oldham couplings are often used when electrical isolation between shafts is required.

Each flexible coupling design has its strengths and limitations, and the choice depends on factors such as the application’s torque requirements, misalignment conditions, operating environment, and speed. Proper selection of the coupling type ensures optimal performance, efficiency, and reliability in various mechanical systems and rotating machinery.

China best Premium Plastic Flexible Coupling PVC Universal Coupling PVC Pipe Coupling Fitting UPVC Reducing Coupling  China best Premium Plastic Flexible Coupling PVC Universal Coupling PVC Pipe Coupling Fitting UPVC Reducing Coupling
editor by CX 2024-05-17

China Standard 19mm Flexible Woodon China Gear Universal Coupling SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295

Product Description

Product     Name Cardan Shaft
Product     Model SWC-I75A-335+40
Main          Material 35CrMo or 45# Steel
Nominal  Torque 500  N.M
Normal      Length 335 mm
Length       Compensation 40 mm

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible gear coupling

Compensation for Axial, Angular, and Parallel Misalignments with Flexible Gear Couplings

Flexible gear couplings are known for their ability to accommodate various types of misalignments, including axial, angular, and parallel misalignments. Here’s how they compensate for each type:

  • Axial Misalignment: Axial misalignment occurs when the two shafts move closer or farther away from each other along the axis of rotation. Flexible gear couplings can absorb this type of misalignment through their flexible design, allowing the gear teeth to articulate and adjust to the axial movement without transmitting harmful forces to the connected equipment.
  • Angular Misalignment: Angular misalignment occurs when the two shafts are not collinear and form an angle with each other. Flexible gear couplings can accommodate angular misalignment by allowing the gear teeth to articulate and flex as the shafts are angularly displaced. This flexibility ensures that torque transmission remains smooth and minimizes stress on the coupling and connected equipment.
  • Parallel Misalignment: Parallel misalignment happens when the two shafts are offset horizontally while maintaining parallelism. Flexible gear couplings can handle this misalignment by utilizing their flexible elements to adjust to the lateral displacement of the shafts. The ability to compensate for parallel misalignment prevents excessive forces from being transmitted to the machinery, protecting it from damage.

Thanks to their design and material properties, flexible gear couplings provide a reliable solution for compensating for axial, angular, and parallel misalignments, making them suitable for a wide range of applications in various industries.

flexible gear coupling

Handling Torsional Stiffness and Dynamic Balancing in Flexible Gear Couplings

Flexible gear couplings are designed to effectively handle torsional stiffness and dynamic balancing in rotating machinery. Here’s how they achieve this:

  • Torsional Stiffness: Flexible gear couplings are engineered to provide a certain level of torsional stiffness while still allowing for some flexibility. This stiffness helps transmit torque efficiently from one shaft to another, ensuring minimal power loss. The flexibility of the coupling allows it to accommodate misalignments and shock loads, reducing the risk of damage to connected equipment.
  • Dynamic Balancing: Proper dynamic balancing is crucial in rotating machinery to prevent vibrations that could lead to premature wear and damage. Flexible gear couplings are designed to have symmetrical and evenly distributed masses. This helps minimize any dynamic imbalances that could occur during rotation, resulting in smoother and more stable operation.

The combination of torsional stiffness and dynamic balancing in flexible gear couplings makes them suitable for various industrial applications, providing reliable power transmission while dampening vibrations and accommodating misalignments. It ensures that the connected machinery operates efficiently and with reduced wear and tear, resulting in longer equipment lifespan and enhanced overall system performance.

flexible gear coupling

Flexible Gear Coupling: Function and Operation

A flexible gear coupling is a type of mechanical coupling used to connect two shafts in a power transmission system. It consists of two hubs with external gear teeth and an elastomeric flexible element between them. The flexible element can be made of materials such as polyurethane, rubber, or synthetic materials with high torsional flexibility and damping properties.

The function of a flexible gear coupling is to transmit torque between the connected shafts while accommodating misalignments and absorbing shocks and vibrations. When the shafts are misaligned due to angular, parallel, or axial displacements, the flexible element allows the hubs to move relative to each other, thus minimizing the transmission of misalignment forces to the connected machinery.

The operation of a flexible gear coupling involves the following steps:

  1. The torque from the driving shaft is transmitted to the first hub with external gear teeth.
  2. The external gear teeth on the first hub mesh with the internal gear teeth on the flexible element.
  3. As the flexible element deforms under torque and misalignment, it allows the second hub to rotate while maintaining contact with the first hub.
  4. The torque is then transmitted from the flexible element to the second hub, which drives the driven shaft.

The flexibility of the elastomeric element in a flexible gear coupling allows it to dampen vibrations and shocks that may occur during operation, thereby protecting the connected equipment from potential damage. Additionally, its ability to accommodate misalignment reduces stress on the shafts and bearings, extending the life of the power transmission system.

China Standard 19mm Flexible Woodon China Gear Universal Coupling SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295  China Standard 19mm Flexible Woodon China Gear Universal Coupling SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295
editor by CX 2024-05-17

China Good quality Cast Iron Flexible Jaw Coupling for General Shaft Connection (L035)

Product Description

JAW coupling,

1. The couplings offer a range of hub and element selection to meet different demands.

2. They can absorb shock and cater for incidental misalignment and damp out small amplitude vibrations.

3. NBR, Urethane, Hytrel elements.

4. Customized requirement is available.

Element material Rubber Urethane Hytrel Brozen

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

Can flexible couplings be used in food processing and pharmaceutical industries?

Yes, flexible couplings can be used in both the food processing and pharmaceutical industries under certain conditions. These industries have stringent requirements for equipment used in their processes, including hygienic design, cleanliness, and resistance to contamination. Here’s how flexible couplings can be used in these industries:

  • Hygienic Design: In food processing and pharmaceutical applications, flexible couplings with hygienic designs are essential to prevent the accumulation of food particles, dust, or other contaminants. Stainless steel or FDA-approved materials are commonly used to ensure compliance with hygiene standards and ease of cleaning.
  • Cleanability: The equipment used in food processing and pharmaceutical industries must be easily cleanable to maintain product purity. Flexible couplings with smooth surfaces and no crevices or pockets that can trap particles are preferred.
  • Chemical Resistance: Some food processing and pharmaceutical applications involve the use of cleaning agents or chemicals. Flexible couplings must be resistant to these chemicals to prevent degradation and ensure long-term reliability.
  • Corrosion Resistance: In food processing and pharmaceutical environments, equipment is often exposed to washdowns and sanitizing solutions. Flexible couplings made of corrosion-resistant materials can withstand these conditions and maintain their performance over time.
  • Compliance with Standards: The food processing and pharmaceutical industries are subject to strict regulations and standards. Flexible couplings used in these industries should comply with relevant industry standards, such as FDA, EHEDG, or NSF standards.
  • Non-Toxic Materials: Flexible couplings used in direct contact with food or pharmaceutical products must be made of non-toxic materials that will not contaminate the process.
  • Resistant to Temperature Extremes: Some food and pharmaceutical processes involve extreme temperatures. Flexible couplings must be capable of withstanding high and low temperatures without compromising their integrity.

When selecting flexible couplings for food processing and pharmaceutical applications, it is essential to work closely with manufacturers and suppliers who understand the industry’s unique requirements. Customized solutions may be necessary to ensure that the couplings meet the specific needs of the application and comply with industry standards.

Summary: Flexible couplings can be used in food processing and pharmaceutical industries when they meet the necessary hygiene, cleanability, chemical resistance, corrosion resistance, compliance with standards, and temperature resistance requirements. Proper selection and application of flexible couplings can contribute to the efficiency and reliability of equipment in these critical industries.

flexible coupling

What are the differences between flexible couplings and rigid couplings in terms of performance?

Flexible couplings and rigid couplings are two distinct types of couplings used in mechanical systems, and they differ significantly in terms of performance and applications.

  • Torsional Flexibility: The primary difference between flexible and rigid couplings lies in their ability to handle misalignments and torsional flexibility. Flexible couplings are designed with elements, such as elastomeric inserts or metal bellows, that can deform or twist to accommodate shaft misalignments, angular offsets, and axial movements. On the other hand, rigid couplings do not have any flexibility and maintain a fixed connection between the shafts, which means they cannot compensate for misalignment.
  • Misalignment Compensation: Flexible couplings can absorb and mitigate misalignment between shafts, reducing stress and wear on connected components. In contrast, rigid couplings require precise alignment during installation, and any misalignment can lead to increased loads on the shafts and bearings, potentially leading to premature failure.
  • Vibration Damping: Flexible couplings, especially those with elastomeric elements, offer damping properties that can absorb and dissipate vibrations. This damping capability reduces the transmission of vibrations and shocks through the drivetrain, improving the overall system performance and protecting connected equipment. Rigid couplings, being solid and without damping elements, do not provide this vibration damping effect.
  • Backlash: Flexible couplings can have some degree of backlash due to their flexibility, particularly in certain designs. Backlash is the play or free movement between connected shafts. In contrast, rigid couplings have minimal or no backlash, providing a more precise and immediate response to changes in rotational direction.
  • Torque Transmission: Rigid couplings are more efficient in transmitting torque since they do not have any flexible elements that can absorb some torque. Flexible couplings, while capable of transmitting substantial torque, may experience some power loss due to the deformation of their flexible components.
  • Applications: Flexible couplings are widely used in applications that require misalignment compensation, damping, and shock absorption, such as pumps, motors, and industrial machinery. On the other hand, rigid couplings are used in situations where precise alignment is critical, such as connecting shafts of well-aligned components or shafts that require synchronous operation, like in some encoder applications.

In summary, flexible couplings excel in applications where misalignment compensation, vibration damping, and shock absorption are required. They are more forgiving in terms of alignment errors and can accommodate dynamic loads. Rigid couplings, on the other hand, are used in situations where precise alignment and zero backlash are essential, ensuring direct and immediate power transmission between shafts.

flexible coupling

Can flexible couplings be used in both horizontal and vertical shaft arrangements?

Yes, flexible couplings can be used in both horizontal and vertical shaft arrangements. The design of flexible couplings allows them to accommodate misalignment and compensate for angular, parallel, and axial displacements between the shafts, making them suitable for various shaft orientations.

Horizontal Shaft Arrangements:

In horizontal shaft arrangements, where the shafts are parallel to the ground or horizontal plane, flexible couplings are commonly used to connect two rotating shafts. These couplings help transmit torque from one shaft to another while accommodating any misalignment that may occur during operation. Horizontal shaft arrangements are common in applications such as pumps, compressors, conveyors, and industrial machinery.

Vertical Shaft Arrangements:

In vertical shaft arrangements, where the shafts are perpendicular to the ground or vertical plane, flexible couplings are also applicable. Vertical shafts often require couplings that can handle the additional weight and forces resulting from gravity. Flexible couplings designed for vertical applications can support the weight of the rotating equipment while allowing for some axial movement to accommodate thermal expansion or other displacements. Vertical shaft arrangements are commonly found in applications such as pumps, gearboxes, turbines, and some marine propulsion systems.

Considerations for Vertical Shaft Arrangements:

When using flexible couplings in vertical shaft arrangements, there are a few additional considerations to keep in mind:

  • Thrust Load: Vertical shafts can generate thrust loads, especially in upward or downward direction. The flexible coupling should be selected based on its capacity to handle both radial and axial loads to accommodate these forces.
  • Lubrication: Some vertical couplings may require additional lubrication to ensure smooth operation and reduce wear, particularly if they are exposed to high axial loads or extended vertical shafts.
  • Support and Bearing: Proper support and bearing arrangements for the vertical shaft are essential to prevent excessive shaft deflection and ensure the flexible coupling functions correctly.

Overall, flexible couplings are versatile and adaptable to various shaft orientations, providing efficient power transmission and misalignment compensation. Whether in horizontal or vertical arrangements, using the appropriate flexible coupling design and considering the specific application requirements will help ensure reliable and efficient operation.

China Good quality Cast Iron Flexible Jaw Coupling for General Shaft Connection (L035)  China Good quality Cast Iron Flexible Jaw Coupling for General Shaft Connection (L035)
editor by CX 2024-05-17

China Professional Factory Price ISO2531 Ductile Cast Iron Flexible Flange Adaptor Coupling

Product Description

 

Ductile Iron Compact Universal Flexible Flange Adaptor EN 14525 ISO 2531 EN 545 EN598 For Water Or Sewerage Pipeline Projects

Description

CHINAMFG can supply Compact Universal Flanged Adaptors with the most reasonable design in the market, according to EN 14525, ISO2531,EN545, EN598, from DN40 to DN600. Universal flanged adaptors are suitable for jointing plain-ended pipes with same or different materials and same or different outside diameters within the pipe O.D. ranges

Name

Compact Universal Flexible Flange Adaptor

Material

Body:Ductile iron grade 500-7/ 450-12 in accordance with ISO 1083 or 70-50-05/65-45-12 with ASTM A536

Gland: Ductile Iron grade 500-7/450-10 in accordance with ISO 1083 or 70-50-05/65-45-12 with ASTM A536
Gasket: Rubber E.P.D.M./SBR/NBR in accordance with EN 681.1
D-BOLTS AND NUTS: Carbon Steel Grade 8.8 with dacromet coating

Flange

PN10, PN16 or PN25 drilling in accordance with ISO 7005-2/EN 1092-2.

Working Pressure

16 Bar or 250 CHINAMFG

Fluid Temperature

0°C-50°C, excluding frost.

Allowed Angular Deflection

Joint Gap

19mm

Coating

External Coatings: Liquid epoxy resin painting; Epoxy applied by FBE; According to customers’ requirements
Internal Coatings: Liquid epoxy resin painting; Epoxy applied by FBE; According to customers’ requirements

Reference Rules

Designed and tested in accordance with EN14525, ANSI/AWWA C219 and EN545

Universal Flanged Adaptors, designed by experienced engineers in CHINAMFG in 2571 and applied the patent,
with wide range tolerance on O.D. (up to 24mm).
 

Universal Flanged Adaptors are suitable for jointing plain-ended pipes with same or different materials and same or different outside diameters within the pipe O.D. ranges. It can be connected with a variety of pipes, as long as the OD of the pipe connected is within the range, especially the DI, CI and PVC pipes, which are considered during the designing.For example, If the connector range is 108-128, then you can connect all pipes within the outer diameter of the pipe, iron pipe, PVC, PE, steel pipe, cement pipe, etc.

The circumferential ribbed, specially profiled gaskets in the high quality material, provide for smooth installation by minimizing contact friction and restrict to pull out.

The gasket also provide a leak tight seal across the O.D. range per nominal size and still allow for thermal expansion and contraction of the pipe (up to 5mm per gasket), facilitated through gasket deformation.

Wide flange sealing surface.

D Bolts to avoid turning during tightening the bolts.

CHINAMFG FA with the further more reasonable sizes and ranges, can allow the main pipe sizes in the most reasonable location, and the gasket can be at the perfect situation after assembled, which reduced the risk of leakage when the pipe OD at the minimum range and reduced the workload of tightening the bolts hardly.

Accessories: including gland, gasket, bolt, etc.
Features: 1 ends are connected to the pipe socket, the other is connected with a flange, which can be connected to different materials in the range at the same time.

Package
Packing: Different package CHINAMFG your request,like wood cases&pallets,ply-wood crates&pallets,steel crates&pallets and etc.

Quality Control
Company Profile

CHINAMFG has continually invested in better technology and production facilities. More than 4,000 patterns
are ready. We are capable to finish all the production processes from moulding, shot-blasting, machining, coating to packaging. We have over 100,000 m2 foundry land including:
-10,000 m2 of the pattern, sand mixing, polishing, machining, hydraulic pressure, coating, packaging workshops;
-4,000 m2 of 3 green sand moulding workshops and 1 resin sand moulding workshops;
-3,000 m2 of automatic moulding machine line and epoxy coating line
-professional laboratory
-machining shop
-and our own tooling shop

Strict process and operating regulations together with perfect quality assurance system making every production step under control. All the products are subject to tests and inspections including composition analysis, metallographic examination, dimension & surface finish inspection, ring test, tensile test, hardness test, hydrostatic test, CHINAMFG and coating test to be sure that the products meet the requirements of the standards.

Since 2009, CHINAMFG Pipeline has developed from a pipes & fittings seller to a professional project solution provider, including the 1 stop service and solution from pipes, fittings, couplings & flanged adaptors, valves, fire hydrants, to water CHINAMFG and accessories.

SYI products have served 111 countries CHINAMFG up to now!
Most of these customers cooperated with CHINAMFG for more than 20 years!
We value long term cooperation relationship mostly!

Welcome to send us an inquiry for more details and price!!!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How do flexible couplings handle shaft misalignment in rotating equipment?

Flexible couplings are designed to handle shaft misalignment in rotating equipment, providing several key features that allow them to accommodate misalignment effectively. Here’s how they work:

  • Angular Misalignment: Flexible couplings can handle angular misalignment, which occurs when the axes of the connected shafts are not perfectly aligned. The coupling’s flexible elements allow for slight angular deviation, ensuring that the torque can still be transmitted smoothly between the shafts.
  • Parallel Misalignment: Parallel misalignment occurs when the connected shafts are not perfectly in line but run parallel to each other. Flexible couplings can compensate for this misalignment by utilizing their ability to flex or slide, allowing the shafts to remain connected while maintaining rotational integrity.
  • Axial Misalignment: Axial misalignment refers to the situation where the connected shafts have a slight axial displacement. Some flexible couplings have specific designs to handle axial misalignment, allowing for limited movement along the axial direction without compromising the connection between the shafts.
  • Double Flexing: Certain types of flexible couplings, such as the double-flexing couplings, can accommodate both angular and parallel misalignments simultaneously. These couplings use two sets of flexible elements to achieve this capability, providing a higher degree of misalignment compensation.

Overall, the flexibility of the coupling’s material and design allows it to bend, flex, or slide in response to the misalignment, reducing the stress on the connected equipment and ensuring smooth power transmission. By accommodating misalignment, flexible couplings help prevent premature wear, reduce vibration, and extend the service life of the rotating equipment.

flexible coupling

Can flexible couplings be used in high-temperature environments, such as furnaces and kilns?

Flexible couplings can be used in high-temperature environments, such as furnaces and kilns, but the selection of the appropriate coupling is crucial to ensure reliable performance and longevity under these extreme conditions. Here are some key considerations:

  • Material Selection: The choice of materials is critical when using flexible couplings in high-temperature applications. Look for couplings made from heat-resistant materials that can withstand the elevated temperatures without experiencing significant degradation. Common materials used for high-temperature couplings include stainless steel, high-temperature alloys, and certain types of elastomers designed for heat resistance.
  • Lubrication: High temperatures can cause lubricants to break down or evaporate more quickly. Some flexible couplings may require specialized high-temperature lubricants to ensure smooth operation and reduce wear at elevated temperatures. Check the manufacturer’s recommendations for lubrication in high-temperature environments.
  • Thermal Expansion: In high-temperature applications, the equipment and shafts may experience thermal expansion, leading to misalignment. Flexible couplings with higher misalignment capabilities may be necessary to accommodate these thermal effects and prevent additional stress on the system.
  • Torsional Stiffness: Consider the required torsional stiffness for the specific application. In high-temperature environments, couplings may experience changes in stiffness due to temperature variations. It is essential to choose a coupling with appropriate torsional characteristics for the intended operating temperature range.
  • Application Specifics: Evaluate the specific operating conditions of the furnace or kiln, including the maximum and fluctuating temperatures, vibration levels, and potential exposure to chemicals or other harsh elements. Choose a coupling that can withstand these conditions without compromising performance or safety.
  • Coupling Type: Different types of flexible couplings offer varying degrees of heat resistance and performance capabilities. For example, certain types of disc couplings or metal bellows couplings are more suitable for high-temperature environments due to their robust construction and resistance to heat.
  • Regular Maintenance: In high-temperature applications, couplings may be subject to more stress and wear. Regular inspection and maintenance are essential to monitor the coupling’s condition, lubrication, and alignment to ensure it continues to function optimally in the challenging environment.

Overall, flexible couplings can be utilized in high-temperature environments, but it is vital to choose a coupling specifically designed and rated for these conditions. Working closely with coupling manufacturers and considering the specific demands of the application will help ensure that the selected coupling can handle the challenges posed by furnaces, kilns, and other high-temperature equipment, providing reliable power transmission and contributing to the overall efficiency and safety of the system.

flexible coupling

What role does a flexible coupling play in reducing downtime and maintenance costs?

A flexible coupling plays a significant role in reducing downtime and maintenance costs in industrial machinery and rotating equipment. Here are the key ways in which flexible couplings contribute to these benefits:

  • Misalignment Compensation: One of the primary functions of a flexible coupling is to accommodate misalignment between two connected shafts. Misalignment can occur due to various factors such as thermal expansion, foundation settling, or manufacturing tolerances. By allowing for misalignment, flexible couplings reduce the transmission of harmful forces and stresses to connected components, minimizing wear and preventing premature failures that could lead to costly downtime and repairs.
  • Vibration Damping: Flexible couplings have inherent damping properties due to the elastomeric or flexible elements they incorporate. These elements absorb and dissipate vibration and shock loads that may arise from the operation of rotating machinery. By dampening vibrations, flexible couplings protect the connected equipment from excessive wear and fatigue, extending their service life and reducing the need for frequent maintenance or replacement.
  • Shock Load Absorption: In applications where sudden loads or shocks are common, such as in heavy machinery or high-speed equipment, flexible couplings act as shock absorbers. They can absorb and dissipate the impact energy, preventing damage to the machinery and minimizing downtime caused by unexpected failures or breakdowns.
  • Easy Installation and Alignment: Flexible couplings are designed for ease of installation and alignment. Unlike rigid couplings that require precise shaft alignment, flexible couplings can tolerate some degree of misalignment during installation. This feature simplifies the setup process, reduces installation time, and lowers the risk of misalignment-related issues, ultimately minimizing downtime during initial installation or replacement of couplings.
  • Reduced Maintenance Frequency: The ability of flexible couplings to handle misalignment and dampen vibrations results in reduced wear on bearings, seals, and other connected components. Consequently, the frequency of maintenance intervals can be extended, reducing the need for frequent inspections and component replacements. This directly translates to lower maintenance costs and less downtime for maintenance tasks.
  • Equipment Protection: By reducing the transmission of shock loads and vibrations, flexible couplings act as protective barriers for connected equipment. They help prevent catastrophic failures and subsequent damage to expensive machinery, avoiding unplanned shutdowns and costly repairs.

Overall, flexible couplings are critical components that improve the reliability and longevity of rotating equipment. Their ability to handle misalignment, dampen vibrations, and protect against shock loads contributes to reduced downtime, lower maintenance costs, and increased productivity in industrial applications.

China Professional Factory Price ISO2531 Ductile Cast Iron Flexible Flange Adaptor Coupling  China Professional Factory Price ISO2531 Ductile Cast Iron Flexible Flange Adaptor Coupling
editor by CX 2024-05-16

China Best Sales Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Main products
Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings.
Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.
Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. However, due to the strength of elastic elements, the transmitted torque is generally inferior to that of flexible couplings without elastic elements. Common types include elastic sleeve pin couplings, elastic pin couplings, quincunx couplings, tire type couplings, serpentine spring couplings, spring couplings, etc

Coupling performance

1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

How to select the appropriate coupling type

The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.

If you cannot determine the type, you can contact our professional engineer

Related products

 

Company Profile

 

Our Equipments

Main production equipment:
Large lathe, surface grinder, milling machine, gear shaper, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, casting equipment, etc.
Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector, special detection, modular fixture (self-made), etc.

Machining equipments
Heat equipment

 

Our Factory
Application – Photos from our partner customers

Company Profile
Our leading products are mechanical transmission basic parts – couplings, mainly including universal couplings, drum gear couplings, elastic couplings and other 3 categories of more than 30 series of varieties. It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.
Our factory takes the basic parts of national standards as the benchmark, has more than 40 years of coupling production experience, takes “scientific management, pioneering and innovation, ensuring quality and customer satisfaction” as the quality policy, and aims to continuously provide users with satisfactory products and services. The production is guided by reasonable process, and the ISO9001:2015 quality management system standard is strictly implemented. We adhere to the principle of continuous improvement and innovation of coupling products. In recent years, it has successfully developed 10 national patent products such as SWF cross shaft universal coupling, among which the double cross shaft universal joint has won the national invention patent, SWF cross shaft universal coupling has won the new product award of China’s general mechanical parts coupling industry and the ZHangZhoug Province new product science and technology project.
Our factory has strong technical force, excellent process equipment, complete professional production equipment, perfect detection means, excellent after-sales service, various products and complete specifications. At the same time, we can provide the design and manufacturing of special non-standard products according to the needs of users. Our products sell well at home and abroad, and are trusted by the majority of users. We sincerely welcome friends from all walks of life at home and abroad to visit and negotiate for common development.p

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible gear coupling

Materials Used in Manufacturing Flexible Gear Couplings and Their Impact on Performance

Flexible gear couplings are designed to transmit torque while accommodating misalignments and reducing vibrations. The choice of materials for manufacturing these couplings plays a crucial role in their overall performance and suitability for specific applications. Some common materials used in flexible gear couplings include:

  • Steel: Steel is a popular material for flexible gear couplings due to its high strength and durability. It can handle substantial torque loads and provides good resistance to wear and fatigue. Steel couplings are commonly used in heavy-duty applications, such as steel mills, mining, and power generation.
  • Stainless Steel: Stainless steel is used when corrosion resistance is required, making it suitable for applications in corrosive environments like the marine, chemical, and petrochemical industries.
  • Alloy Steel: Alloy steel is used to improve specific properties, such as hardness and heat resistance. It is often employed in high-temperature applications found in steel processing and power generation.
  • Cast Iron: Cast iron is known for its excellent wear resistance and damping capabilities. It is used in applications where shock absorption and vibration reduction are critical, such as pumps and compressors.
  • Aluminum: Aluminum is lightweight and offers good corrosion resistance, making it suitable for applications where weight reduction is important, such as aerospace and certain industrial machinery.
  • Bronze: Bronze is used for its self-lubricating properties and resistance to wear. It is often found in couplings used in low-speed applications, such as conveyor systems.
  • Nylon and Plastics: Nylon and other plastics are used in some couplings where electrical isolation and lightweight properties are essential, such as in medical equipment and certain automation systems.

The selection of materials depends on the specific requirements of the application, including torque, speed, temperature, environmental conditions, and the presence of corrosive substances. Proper material selection ensures that the flexible gear coupling can operate efficiently and reliably, providing optimal performance and minimizing maintenance needs.

flexible gear coupling

Potential Causes of Failure in Flexible Gear Couplings and Prevention

Flexible gear couplings, like any mechanical component, may experience failures if not properly maintained or operated. Some potential causes of failure and ways to prevent them include:

  • Misalignment: Misalignment between the shafts can cause excessive stress on the coupling components, leading to failure. Regularly check and align the shafts to ensure they are properly aligned within specified tolerances.
  • Overloading: Exceeding the rated torque capacity of the coupling can result in premature failure. Always operate within the recommended torque limits and avoid sudden shock loads.
  • Poor Lubrication: Inadequate or improper lubrication can lead to increased friction, wear, and overheating. Follow the manufacturer’s guidelines for lubrication frequency and use the correct type of lubricant.
  • Corrosion: Exposure to corrosive environments can degrade the coupling’s material over time. Select couplings made from corrosion-resistant materials or use protective coatings when necessary.
  • Fatigue: Cyclic loading and continuous operation can cause fatigue failure in flexible gear couplings. Ensure the coupling is rated for the application’s required number of cycles and replace it if it shows signs of fatigue or wear.
  • Temperature: Operating the coupling at temperatures beyond its limits can lead to material degradation and reduced performance. Check the coupling’s temperature rating and operate within the specified range.

Regular inspection, maintenance, and adherence to the manufacturer’s guidelines are essential to prevent failure and ensure the reliable performance of flexible gear couplings. Implementing preventive measures can extend the couplings’ lifespan, minimize downtime, and enhance the overall efficiency of the machinery they are part of.

flexible gear coupling

Flexible Gear Coupling: Function and Operation

A flexible gear coupling is a type of mechanical coupling used to connect two shafts in a power transmission system. It consists of two hubs with external gear teeth and an elastomeric flexible element between them. The flexible element can be made of materials such as polyurethane, rubber, or synthetic materials with high torsional flexibility and damping properties.

The function of a flexible gear coupling is to transmit torque between the connected shafts while accommodating misalignments and absorbing shocks and vibrations. When the shafts are misaligned due to angular, parallel, or axial displacements, the flexible element allows the hubs to move relative to each other, thus minimizing the transmission of misalignment forces to the connected machinery.

The operation of a flexible gear coupling involves the following steps:

  1. The torque from the driving shaft is transmitted to the first hub with external gear teeth.
  2. The external gear teeth on the first hub mesh with the internal gear teeth on the flexible element.
  3. As the flexible element deforms under torque and misalignment, it allows the second hub to rotate while maintaining contact with the first hub.
  4. The torque is then transmitted from the flexible element to the second hub, which drives the driven shaft.

The flexibility of the elastomeric element in a flexible gear coupling allows it to dampen vibrations and shocks that may occur during operation, thereby protecting the connected equipment from potential damage. Additionally, its ability to accommodate misalignment reduces stress on the shafts and bearings, extending the life of the power transmission system.

China Best Sales Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  China Best Sales Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling
editor by CX 2024-05-16

China Good quality Machinery Part Roller Chain Coupling Aluminum Case with Sprockets Shaft Flexible Coupling Kc 4012-10020

Product Description

Product Description

     The roller chain coupling is a flexible coupling of amazingly simple construction. It consists of a combination of 1 coupling chain and a pair of coupling sprockets. Flexible and strong, the  roller chain coupling is suitable for a wide range of coupling applications.
     Roller chain coupling can used for the environment which with high temperature, wet and dirty conditions. It is not suitable for the occasion which is in high speed and with strong impact load. Roller chain coupling should working with excellent lubrication and protection cover conditions. 
The common chain coupling includes double roller chain coupling, single row roller chain coupling, tooth shape chain coupling, nylon chain coupling. Its scale is compact and its weight is light. But roller chain coupling don’t have high requirement to installation precision. 
     Generally speaking, it is usually in long service life. Production line equipment for various kinds of frozen food and dehydrated vegetables should transport by stainless steel chain. Roller chains are widely applied to household, industrial and agricultural machinery, includes conveyor, drawing machine, printing machine, automobile, motorcycle and bicycle.

Main Features
1.Simple structure,easy assembly and disassembly.
2.Light weight,and long service life.
3.Have a certain ability to compensate for installation less precision.
4.Suitable for high temperature,wet and dusty industrial environment.
5.Can not for high speed,violent vibration.

Techncial Date

KASIN No. Chain Type d L G S D H C Weight/Kg A B Casing Weight/Kg
3012 06B-2 × 12 12~16 64.8 29.8 5.2 35 45 10.2 0.31 69 63 0.22
4012 40-2 × 12 12~22 79.4 36 7.4 35 62 14.4 0.73 77 72 0.3
4014 40-2 × 14 12~28 79.4 36 7.4 43 69 14.4 1.12 84 75 0.31
4016 40-2 × 16 14~32 87.4 40 7.4 50 77 14.4 1.5 92 72 0.35
5014 50-2 × 14 15~35 99.7 45 9.7 55 86 18.1 2.15 101 85 0.47
5016 50-2 × 16 16~40 99.7 45 9.7 62 93 18.1 2.75 110 87 0.5
5018 50-2 × 18 16~45 99.7 45 9.7 70 106 18.1 3.6 122 85 0.6
6018 60-2 × 18 20~56 123.5 56 11.5 85 127 22.8 6.55 147 105 1.2
6571 60-2 × 20 20~60 123.5 56 11.5 1/8822 0571 -57152031              Fax: 86~/8822 0571 -57152030

 
Http://kasinchain   

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the real-world applications of flexible couplings in various industries?

Flexible couplings are widely used in a variety of industries to transmit power and motion between rotating shafts while accommodating misalignments and reducing vibrations. Some of the real-world applications of flexible couplings include:

  • Industrial Machinery: Flexible couplings are extensively used in industrial machinery such as pumps, compressors, fans, mixers, and conveyors. They help transmit power from motors to driven equipment, while absorbing misalignments and reducing shock loads and vibrations.
  • Automotive: In the automotive industry, flexible couplings are used in various applications, including drive shafts, steering systems, and engine accessories. They help transmit power and motion while allowing for misalignment and reducing torsional vibrations.
  • Aerospace: In aircraft and aerospace applications, flexible couplings are used in engine systems, landing gear, and flight control systems. They provide reliable power transmission while accommodating misalignment and reducing vibrations in the demanding aerospace environment.
  • Marine: Flexible couplings are used in marine propulsion systems to connect the engine to the propeller shaft. They help transmit power and motion while compensating for shaft misalignment and reducing vibrations in marine vessels.
  • Renewable Energy: In wind turbines and solar tracking systems, flexible couplings are used to transfer power and motion between the turbine or solar panel and the generator. They allow for misalignment caused by wind and sun direction changes, ensuring optimal energy conversion.
  • Oil and Gas: In the oil and gas industry, flexible couplings are used in pumps, compressors, and drilling equipment. They provide reliable power transmission while accommodating misalignments and reducing vibrations in harsh and demanding oilfield environments.
  • Mining and Construction: Flexible couplings are used in heavy-duty mining and construction equipment, including excavators, bulldozers, and loaders. They help transmit power from engines to drive systems while compensating for misalignments and reducing vibrations in rugged and challenging environments.
  • Food and Beverage: In food processing and packaging machinery, flexible couplings are used to transmit power and motion while meeting strict hygiene and safety requirements. They help prevent contamination while accommodating shaft misalignments.
  • Medical Equipment: Flexible couplings are used in medical devices and equipment, including imaging machines and robotic surgical systems. They help transmit motion and power while reducing vibrations and maintaining precision.
  • Textile Industry: In textile manufacturing machines, flexible couplings are used in spinning, weaving, and dyeing processes. They help transmit power efficiently while accommodating misalignments and reducing vibrations during high-speed operation.

These are just a few examples of the diverse applications of flexible couplings in various industries. Their ability to enhance power transmission efficiency, accommodate misalignments, and reduce vibrations makes them a versatile and indispensable component in modern machinery and equipment.

flexible coupling

How does a flexible coupling handle misalignment in large rotating equipment?

Flexible couplings are designed to accommodate various types of misalignment in large rotating equipment, ensuring smooth and efficient power transmission while minimizing stress on connected components. Here’s how flexible couplings handle different types of misalignment:

  • Angular Misalignment: Angular misalignment occurs when the axes of the two connected shafts are not collinear and form an angle. Flexible couplings can handle angular misalignment by allowing the coupling elements to flex and move slightly, thus accommodating the angle between the shafts. The flexible elements, often made of elastomeric materials or metallic membranes, can bend and twist to compensate for angular misalignment, ensuring that the coupling remains engaged and transfers torque effectively.
  • Parallel Misalignment: Parallel misalignment, also known as offset misalignment, happens when the two shafts are not perfectly aligned along their axes, resulting in a lateral shift. Flexible couplings can handle parallel misalignment through their ability to move radially, allowing the flexible elements to adjust and take up the offset. This capability prevents excessive side loads on the shafts and bearings, reducing wear and increasing the lifespan of the equipment.
  • Axial Misalignment: Axial misalignment occurs when there is a linear displacement of one shaft relative to the other, either toward or away from the other shaft. Some flexible couplings, such as certain types of flexible disc couplings, can accommodate a limited amount of axial misalignment. However, for large axial movement, other types of couplings or special designs may be required.

The flexibility of the coupling elements allows them to act as a buffer between the shafts, dampening shocks, vibrations, and torsional forces caused by misalignment or other dynamic loads. This helps protect the connected equipment from damage and enhances the overall performance and reliability of the rotating system.

In large rotating equipment, where misalignment is more common due to thermal expansion, foundation settling, or other factors, flexible couplings play a critical role in maintaining smooth operation and reducing stress on the machinery. However, it is essential to choose the appropriate type of flexible coupling based on the specific requirements of the application and to regularly inspect and maintain the coupling to ensure optimal performance and longevity.

flexible coupling

What are the maintenance requirements for flexible couplings?

Maintenance of flexible couplings is essential to ensure their reliable and efficient performance over their service life. Proper maintenance helps prevent premature wear, reduces the risk of unexpected failures, and extends the lifespan of the couplings. Here are some key maintenance requirements for flexible couplings:

  • Regular Inspection: Perform regular visual inspections of the flexible couplings to check for signs of wear, damage, or misalignment. Look for cracks, tears, or any other visible issues in the coupling components.
  • Lubrication: Some flexible couplings, especially those with moving parts or sliding surfaces, may require periodic lubrication. Follow the manufacturer’s recommendations regarding the type and frequency of lubrication to ensure smooth operation.
  • Alignment Checks: Misalignment is a common cause of coupling failure. Regularly check the alignment of the connected shafts and adjust as necessary. Proper alignment reduces stress on the coupling and improves power transmission efficiency.
  • Torque Monitoring: Monitoring the torque transmitted through the coupling can help detect any abnormal or excessive loads. If the coupling is subjected to loads beyond its rated capacity, it may lead to premature failure.
  • Environmental Protection: If the couplings are exposed to harsh environmental conditions, take measures to protect them from dust, dirt, moisture, and corrosive substances. Consider using protective covers or seals to shield the couplings from potential contaminants.
  • Temperature Considerations: Ensure that the operating temperature of the flexible coupling is within its designed range. Excessive heat can accelerate wear, while extremely low temperatures may affect the flexibility of certain coupling materials.
  • Replace Worn or Damaged Parts: If any components of the flexible coupling show signs of wear or damage, replace them promptly with genuine replacement parts from the manufacturer.
  • Manufacturer’s Guidelines: Follow the maintenance guidelines provided by the coupling manufacturer. They often include specific maintenance intervals and procedures tailored to the coupling’s design and materials.
  • Training and Expertise: Ensure that maintenance personnel have the necessary training and expertise to inspect and maintain the flexible couplings properly. Improper maintenance practices can lead to further issues and compromise the coupling’s performance.

By adhering to these maintenance requirements, you can maximize the service life of the flexible couplings and minimize the risk of unexpected downtime or costly repairs. Regular maintenance helps maintain the efficiency and reliability of the coupling in various industrial, automotive, and machinery applications.

China Good quality Machinery Part Roller Chain Coupling Aluminum Case with Sprockets Shaft Flexible Coupling Kc 4012-10020  China Good quality Machinery Part Roller Chain Coupling Aluminum Case with Sprockets Shaft Flexible Coupling Kc 4012-10020
editor by CX 2024-05-16

China OEM CHINAMFG Jmi Type Flexible Diaphragm Disc Coupling High Quality CHINAMFG Couplings

Product Description

JMI Type Disc Diaphragm Coupling(JB/T9147-1999)

Product Description

 

♦Description
JM Series Diaphragm Coupling of flexible metal flexible coupling, which relies on the metal diaphragm to transmit torque from the main connection, motivation, has the advantages of elastic damping and no lubrication, no noise, is an ideal product for replacing the gear coupling and coupling current. It can compensate for the axial, radial, and angular deviation caused by the manufacturing error, installation error, bearing deformation, and the change in temperature rise.

The main characteristics of JM Series Diaphragm Coupling:
1. Compensation two-axis misalignment of the ability, and tooth type coupling can be much more than a double angle displacement, radial displacement of the small, flexible, allowing a certain axial, radial, and angular displacement.
2. Obvious damping effect, no noise, no wear, and tear.
3. High transmission efficiency, up to 99.86%. Especially suitable for medium and high-speed high-power transmission.
4. Adapt to high temperature (-80+300) and harsh environments, and can be in shock, vibration, safety, and dynamic conditions.
5. Simple structure, lightweight, small size, convenient assembly, and disassembly. Without moving the machine can be disassembled (with intermediate type), with no need for lubrication.
6. Accurately convey the rotational speed, the operation has not turned bad, can be used for the transmission of precision machinery.

JM series diaphragm flexible coupling is widely used in the machinery and equipment industry, metallurgy, mines, petroleum, chemical, electric power, shipbuilding, lifting transport, textile, light industry, agricultural machinery, printing machinery, and water pump, fan, etc. in the transmission of power machine.

Detailed Photos

 

♦Detailed Pictures

♦Basic Parameter and Main Dimension

NO  Tn 
  /N·m
Tmax 
/N·m
 
 [n] 
/r·mi -1
    d 
(H7)
  D  

N·m/rad
t  
 

kg·m 2 
 

/kg 
Y J,J1, 
Z
L
L L L1
JMI1 25 80 6000 14 32 J1  27 Z1 20 35 90 1×10 4 8.8 0.0007 1
16,18,19 42 30
20,22 52 38
JMI2 63 180 5000 18,19 42 30 45 100 1.4×10 4 9.5 0.001 1.3
20,22,24 52 38
25 62 44
JMI3 100 315 5000 20,22,24 52 38 50 120 1.87×10 4 11 0.0571 2.3
25,28 62 44
30 82 60
JMI4 160 500 4500 24 52 38 55 130 3.12×10 4 12.5 0.0037 3.3
25,28 62 44
30,32,35 82 60
JMI5 250 710 4000 28 62 44 60 150 4.32×10 4 14 0.0083 5.3
30,32,35,38 82 60
40 112 84
JMI6 400 1120 3600 32,35,38 82 82 60 65 170 6.88×10 4 15.5 0.0159 8.7
40,42,45 
,48,50
112 84
JMI7 630 1800 3000 40,42 112 112 84 70 210 10.35×10 4 19 0.571 14.3
45,45,50 
,55,56
60 142 107
JMI8 1000 2500 2800 45,48 112 112 84 80 240 16.11×10 4 22.5 0. 0571 22
50,55,56
60,63,65,70 142 107
JMI9 1600 4000 2500 55,56 112 112 84 85 260 26.17×10 4 24 0.1415 29
60,63,65 
,70,71,75
142 107
80 172 132
JMI10 2500 6300 2000 63,65,70 
,71,75
142 142 107 90 280 7.88×10 4 17 0.2974 52
80,85,90,95 172 132
JMI11 4000 9000 1800 75 142 142 107 95 300 10.49×10 4 19.5 0.4782 69
80,85,90,95 172 132
100,110 212 167
JMI12 6300 12500 1600 90,95 172 132 120 340 14.07×10 4 23 0.8067 94
100,110 
,120 ,125
212 167
JMI13 10000 18000 1400 100,110 
,120,125
212 167 135 380 19.23×10 4 28 1.7053 128
130,140 252 202
JMI14 16000 28000 1200 120,125 212 167 150 420 30.01×10 4 31 2.6832 184
130,140,150 252 202
160 302 242
JMI15 25000 40000 1120 140,150 252 202 180 480 47.46×10 4 37.5 4.8015 263
160,170,180 302 242
JMI16 40000 56000 1000 160,170,180 302 242 200 560 68.09×10 4 41 9.4118 384
190,200 352 282
JMI17 63000 80000 900 190,200,220 352 282 220 630 101.3×10 4 47 18.3753 561
240 410 330
JMI18 100000 125000 800 220 352 282 250 710 161.4×10 4 54.5 28.2033 723
240,250,260 410 330
JMI19 160000 200000 700 250,260 410 330 280 800 79.3×10 4 48 66.5813 1267
280,300,320 470 380

 

Other products

 

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

 

Company Profile

 

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

Our service

 

1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly → Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.
 

FAQ

 

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  

♦Contact Us
Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How does a flexible coupling deal with backlash and torsional stiffness?

A flexible coupling deals with backlash and torsional stiffness in the following ways:

  • Backlash: Backlash refers to the play or clearance between mating teeth in mechanical systems. In certain couplings, such as gear couplings, some degree of backlash is unavoidable due to the space between the teeth. However, flexible couplings with elastomeric or beam-type elements typically have minimal to no backlash. The flexibility of these elements allows them to maintain continuous contact and transmit torque smoothly without any gaps or play between components.
  • Torsional Stiffness: Torsional stiffness is the ability of a coupling to resist rotational deformation or twisting under torque. It is essential to have adequate torsional stiffness in some applications to ensure accurate motion transmission and responsiveness. Flexible couplings exhibit a balance between torsional stiffness and flexibility. While they allow for a degree of angular and parallel misalignment, they still possess sufficient torsional stiffness to transmit most of the torque efficiently. This characteristic helps maintain the precision of motion control systems and prevents power losses due to deformation.

The design and materials used in flexible couplings contribute to their ability to address both backlash and torsional stiffness effectively. Here are some key features:

  • Elastomeric Elements: Couplings with elastomeric elements, such as rubber or polyurethane, provide excellent flexibility to absorb misalignments and dampen vibrations. They also exhibit minimal backlash as the elastomeric material maintains continuous contact between the coupling components.
  • Beam-Type Couplings: Beam-type couplings use thin metal beams to transmit torque. These couplings offer high torsional stiffness while still accommodating misalignments. The beams can flex slightly under torque, absorbing shocks and compensating for misalignment without compromising torsional rigidity.
  • Composite Couplings: Some flexible couplings use composite materials that combine the advantages of different materials to achieve specific performance characteristics. These composites can offer low backlash and precise torsional stiffness, making them suitable for demanding applications.
  • High-Quality Manufacturing: The precision manufacturing of flexible couplings ensures that components fit together with minimal clearances, reducing backlash. Additionally, high-quality materials contribute to better torsional stiffness and overall performance.

Overall, flexible couplings strike a balance between flexibility to accommodate misalignments and sufficient torsional stiffness to transmit torque efficiently. By effectively addressing backlash and torsional stiffness, these couplings contribute to the smooth and reliable operation of various mechanical systems.

flexible coupling

How does a flexible coupling handle alignment issues in long-distance shaft connections?

In long-distance shaft connections, it is common to encounter alignment issues due to factors such as thermal expansion, foundation settlement, or machinery shifts. Flexible couplings play a crucial role in handling these alignment issues and ensuring efficient power transmission. Here’s how they achieve this:

  • Misalignment Compensation: Flexible couplings are designed to accommodate both angular and parallel misalignments between shafts. When the shafts are not perfectly aligned, the flexibility of the coupling allows it to bend or flex, reducing the transmission of misalignment forces to connected equipment.
  • Reduced Stress on Equipment: By absorbing and compensating for misalignment, flexible couplings reduce the stress and loads imposed on connected machinery. This feature is particularly important in long-distance shaft connections, where misalignment can be more pronounced.
  • Torsional Flexibility: In addition to angular and parallel misalignments, long-distance shaft connections may also experience torsional misalignment. Flexible couplings can handle torsional flexibility, allowing smooth torque transmission even if the connected shafts have slightly different rotational speeds.
  • Vibration Damping: Long-distance shaft connections can be susceptible to vibrations due to the extended span and potential resonance. Flexible couplings help dampen these vibrations, protecting the connected equipment from excessive wear and fatigue.
  • Resilience to Shock Loads: Long-distance shaft connections in industrial settings may experience shock loads due to sudden starts, stops, or equipment malfunctions. Flexible couplings can absorb and dissipate some of these shock loads, safeguarding the connected components.
  • Longevity: By mitigating the effects of misalignment, vibrations, and shock loads, flexible couplings contribute to the longevity of the connected equipment and reduce maintenance and replacement costs over time.

When selecting a flexible coupling for long-distance shaft connections, it is essential to consider factors such as the degree of misalignment, torque requirements, operating conditions, and the environment in which the coupling will be used. Regular inspection and maintenance of the flexible coupling can further enhance its performance and ensure reliable operation in long-distance shaft connections.

flexible coupling

How does a flexible coupling handle angular, parallel, and axial misalignment?

A flexible coupling is designed to accommodate various types of misalignment between two rotating shafts: angular misalignment, parallel misalignment, and axial misalignment. The flexibility of the coupling allows it to maintain a connection between the shafts while compensating for these misalignment types. Here’s how a flexible coupling handles each type of misalignment:

  • Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Flexible couplings can handle angular misalignment by incorporating an element that can flex and bend. One common design is the “spider” or “jaw” element, which consists of elastomeric materials. As the shafts are misaligned, the elastomeric element can deform slightly, allowing the coupling to accommodate the angular offset between the shafts while still transmitting torque.
  • Parallel Misalignment: Parallel misalignment, also known as offset misalignment, occurs when the axes of the two shafts are parallel but not perfectly aligned with each other. Flexible couplings can handle parallel misalignment through the same elastomeric element. The flexible nature of the element enables it to shift and adjust to the offset between the shafts, ensuring continuous power transmission while minimizing additional stresses on the machinery.
  • Axial Misalignment: Axial misalignment, also called end-play misalignment, occurs when the two shafts move closer together or farther apart along their common axis. Flexible couplings can handle axial misalignment through specific designs that allow limited axial movement. For instance, some couplings use slotted holes or a floating member that permits axial displacement while maintaining the connection between the shafts.

By providing the capability to handle angular, parallel, and axial misalignment, flexible couplings offer several advantages for power transmission systems:

  • They help to prevent premature wear and damage to the connected equipment, reducing maintenance and replacement costs.
  • They minimize vibration and shock loads, enhancing the overall smoothness and reliability of the machinery.
  • They reduce the risk of equipment failure due to misalignment-induced stresses, improving the system’s operational life.
  • They allow for easier installation and alignment adjustments, saving time and effort during setup and maintenance.

Overall, flexible couplings play a crucial role in handling misalignment and ensuring efficient power transmission in various industrial applications.

China OEM CHINAMFG Jmi Type Flexible Diaphragm Disc Coupling High Quality CHINAMFG Couplings  China OEM CHINAMFG Jmi Type Flexible Diaphragm Disc Coupling High Quality CHINAMFG Couplings
editor by CX 2024-05-16

China Best Sales Long Service Life Rapid Install and Dismount Rolling Mill Crowned Industrial Steel Flexible Cement Curved Teeth Gear Coupling for Motor and Gearbox

Product Description

Long service life Rapid install and dismount Rolling mill crowned industrial steel flexible cement curved teeth gear coupling for motor and gearbox

Gear Couplings

Advantage:
1. Widely used in various mechanical and hydraulic fields 
2. Low-cost maintenance
3. Compensation for axial, radial and angular misalignment
4. Convenient axial plugging assembly
5. Installed horizontally and vertically without using any social tools.
6. Excellent mechanical properties
7. No brittlement at low temperature
8. Good slippery and frictional properties
9. Exellent electrical insulation

Application:

1. Printing machinery / Packing machinery / Wood-working machinery etc large-scale mechanical equipment       

2. Repair replacement 

 

Company Information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible gear coupling

Compensation for Axial, Angular, and Parallel Misalignments with Flexible Gear Couplings

Flexible gear couplings are known for their ability to accommodate various types of misalignments, including axial, angular, and parallel misalignments. Here’s how they compensate for each type:

  • Axial Misalignment: Axial misalignment occurs when the two shafts move closer or farther away from each other along the axis of rotation. Flexible gear couplings can absorb this type of misalignment through their flexible design, allowing the gear teeth to articulate and adjust to the axial movement without transmitting harmful forces to the connected equipment.
  • Angular Misalignment: Angular misalignment occurs when the two shafts are not collinear and form an angle with each other. Flexible gear couplings can accommodate angular misalignment by allowing the gear teeth to articulate and flex as the shafts are angularly displaced. This flexibility ensures that torque transmission remains smooth and minimizes stress on the coupling and connected equipment.
  • Parallel Misalignment: Parallel misalignment happens when the two shafts are offset horizontally while maintaining parallelism. Flexible gear couplings can handle this misalignment by utilizing their flexible elements to adjust to the lateral displacement of the shafts. The ability to compensate for parallel misalignment prevents excessive forces from being transmitted to the machinery, protecting it from damage.

Thanks to their design and material properties, flexible gear couplings provide a reliable solution for compensating for axial, angular, and parallel misalignments, making them suitable for a wide range of applications in various industries.

flexible gear coupling

Comparison of Flexible Gear Couplings with Diaphragm Couplings and Beam Couplings

Flexible gear couplings, diaphragm couplings, and beam couplings are all types of flexible couplings used in mechanical power transmission systems. Each type has its unique characteristics and advantages:

  • Flexible Gear Couplings: These couplings consist of gear teeth that mesh together to transmit torque. They are known for their high torque capacity, ability to accommodate misalignment, and torsional stiffness. Flexible gear couplings are commonly used in heavy machinery, such as industrial conveyors and mining equipment, where high torque and misalignment compensation are required.
  • Diaphragm Couplings: Diaphragm couplings utilize a thin metal diaphragm to transmit torque between the shafts. They are ideal for applications that demand high precision and no backlash. Diaphragm couplings offer excellent torsional rigidity and can handle axial, angular, and parallel misalignments. They are often used in precision machinery, robotics, and medical equipment.
  • Beam Couplings: Beam couplings consist of one or more helical cuts along a cylindrical coupling body. They are known for their flexibility, zero backlash, and compact design. Beam couplings can handle misalignment and are suitable for applications with limited space, such as small motors and positioning systems.

The choice between flexible gear couplings, diaphragm couplings, and beam couplings depends on the specific requirements of the application:

  • Flexible gear couplings are preferred for high-torque and heavy-duty applications with substantial misalignments.
  • Diaphragm couplings excel in applications where precision and backlash-free operation are critical.
  • Beam couplings are suitable for compact systems and applications with limited misalignment.

Each type of coupling has its strengths and limitations, and selecting the most appropriate one depends on factors like torque requirements, misalignment, precision, space constraints, and environmental conditions. Consulting with coupling manufacturers or experts can help in making the right choice for a specific application.

“`flexible gear coupling

Flexible Gear Coupling: Function and Operation

A flexible gear coupling is a type of mechanical coupling used to connect two shafts in a power transmission system. It consists of two hubs with external gear teeth and an elastomeric flexible element between them. The flexible element can be made of materials such as polyurethane, rubber, or synthetic materials with high torsional flexibility and damping properties.

The function of a flexible gear coupling is to transmit torque between the connected shafts while accommodating misalignments and absorbing shocks and vibrations. When the shafts are misaligned due to angular, parallel, or axial displacements, the flexible element allows the hubs to move relative to each other, thus minimizing the transmission of misalignment forces to the connected machinery.

The operation of a flexible gear coupling involves the following steps:

  1. The torque from the driving shaft is transmitted to the first hub with external gear teeth.
  2. The external gear teeth on the first hub mesh with the internal gear teeth on the flexible element.
  3. As the flexible element deforms under torque and misalignment, it allows the second hub to rotate while maintaining contact with the first hub.
  4. The torque is then transmitted from the flexible element to the second hub, which drives the driven shaft.

The flexibility of the elastomeric element in a flexible gear coupling allows it to dampen vibrations and shocks that may occur during operation, thereby protecting the connected equipment from potential damage. Additionally, its ability to accommodate misalignment reduces stress on the shafts and bearings, extending the life of the power transmission system.

China Best Sales Long Service Life Rapid Install and Dismount Rolling Mill Crowned Industrial Steel Flexible Cement Curved Teeth Gear Coupling for Motor and Gearbox  China Best Sales Long Service Life Rapid Install and Dismount Rolling Mill Crowned Industrial Steel Flexible Cement Curved Teeth Gear Coupling for Motor and Gearbox
editor by CX 2024-05-16

China Professional Flexible Universal Range Coupling Flange Adaptor ISO9001 Pipe Fitting

Product Description

UNIVERSAL COUPLING

 
APPLICATION

 Universal coupling is also called wide range coupling, tolerance range coupling .
 It can fit most standard pipe materials and therefore dramatically reduces the stocks of dedicated couplings 

 It is suitable for steel , GRP, PVC, PE, Ductile Iron , Cast Iron and Asbestors Cement pipes.
 Size from DN40-DN2000

 
PRESSURE
 PN10, PN16, PN25. Flange according to ISO2531/ EN545,/EN1092
 
MATERIAL

FAQ

1.Q: Are you manufacture or trade company?
A: We are a manufacturer factory and we also have our own exporting license.

2.Q: Can I get free samples?
A: Yes, we can provide you the free samples, but you need to bear their own delivery costs. 

3.Q: Can I have my own Logo on the product?
A: Yes, you can send us your drawing and we can make your logo, but you have to bear their own the cost.

4.Q: Can you produce the products according to my own drawings?
A: Yes, we can produce the products according to your drawings that will be most satisfy you.

5.Q: Can I request to change the form of packaging and transportation?
A: Sure, we’re glad to fulfill your requirement. Yet please understand that extra costs may occur if the form of packaging and transportation are changed.

6.Q: Why trust in us ?
AMore than 20 years in this industry . It makes us professional .Good credit in this market. All of our machines are the assurance of our responsibility.    

7. More questions please feel free to contact us.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the temperature and environmental limitations of flexible couplings?

Flexible couplings are designed to operate within certain temperature and environmental limitations to ensure optimal performance and longevity. The specific limitations may vary depending on the type and material of the coupling. Here are the general considerations:

  • Temperature Range: The temperature range in which a flexible coupling can operate is crucial. High temperatures can affect the material properties, leading to reduced flexibility and potential failure. Low temperatures can cause the material to become brittle and lose its ability to accommodate misalignment. It’s essential to choose a coupling suitable for the intended temperature range of the application.
  • Corrosive Environments: In environments with corrosive substances, such as acids, chemicals, or saltwater, it is essential to select a flexible coupling made of materials that are resistant to corrosion. Stainless steel and certain polymers are commonly used in such environments to prevent degradation and maintain the coupling’s integrity.
  • Hygienic Environments: For applications in food processing, pharmaceuticals, or cleanrooms, hygienic design is critical. Flexible couplings used in these environments should be easy to clean, made of materials that are non-toxic and resistant to contamination, and free from crevices or pockets where debris can accumulate.
  • Explosive or Hazardous Atmospheres: In environments where explosive or hazardous gases, vapors, or dust are present, flexible couplings with anti-static properties or explosion-proof certifications may be necessary to prevent the risk of ignition and ensure safety.
  • Outdoor Applications: For outdoor installations, flexible couplings should be able to withstand exposure to weather conditions, UV radiation, and temperature fluctuations. Couplings with weather-resistant properties are suitable for such applications.
  • High-Speed Applications: In high-speed applications, the centrifugal forces on the flexible coupling increase with rotational speed. Couplings designed for high-speed applications should be balanced to minimize vibrations and ensure smooth operation.
  • Shock and Impact Loads: Flexible couplings used in applications with significant shock or impact loads should have the ability to dampen and absorb these forces to protect connected equipment from damage.
  • Continuous vs. Intermittent Duty: Some flexible couplings are designed for continuous-duty applications, while others are suitable for intermittent duty or start-stop operations. The coupling’s design and material should match the specific duty cycle requirements.

It is essential to consult with the coupling manufacturer or supplier to understand the temperature and environmental limitations of a specific coupling model. Proper selection and application of flexible couplings within their defined limitations contribute to reliable and efficient performance in various industrial and mechanical systems.

flexible coupling

Can flexible couplings be used in pumps, compressors, and fans?

Yes, flexible couplings can be used in pumps, compressors, and fans, and they are commonly employed in these types of rotating machinery. Flexible couplings offer several advantages that make them suitable for such applications:

  • Misalignment Compensation: Pumps, compressors, and fans often experience misalignments due to various factors, such as thermal expansion, foundation settling, or component wear. Flexible couplings can accommodate angular, parallel, and axial misalignments, helping to maintain proper alignment between the driving and driven components.
  • Vibration Damping: Flexible couplings help dampen vibrations in rotating machinery, which is essential for smooth operation and reduced wear on components. In pumps, compressors, and fans, vibration control is crucial to prevent premature failure and maintain reliable performance.
  • Shock Load Absorption: These rotating machines may encounter shock loads during startup or shutdown, especially in reciprocating equipment like reciprocating pumps or compressors. Flexible couplings can absorb and mitigate the impact of such loads, protecting the connected equipment from damage.
  • Reduced Maintenance: Flexible couplings with elastomeric elements or other self-lubricating features require minimal maintenance, leading to cost savings and reduced downtime in pumps, compressors, and fans.
  • Energy Efficiency: Certain flexible coupling designs, such as beam couplings or certain elastomeric couplings, have low mass and inertia. This characteristic helps improve the energy efficiency of rotating machinery, which is particularly beneficial in large-scale pumps, compressors, and fans used in industrial applications.
  • Adaptability: Pumps, compressors, and fans often have varying operating conditions and load profiles. Flexible couplings are adaptable to different operating environments, making them suitable for diverse applications.

In summary, flexible couplings offer several performance-enhancing features that make them well-suited for use in pumps, compressors, and fans. Their ability to accommodate misalignment, dampen vibrations, absorb shocks, and reduce maintenance requirements contributes to improved reliability, efficiency, and longevity of the connected rotating machinery.

flexible coupling

Can flexible couplings be used in corrosive or harsh environments?

Yes, flexible couplings can be designed and selected to be used in corrosive or harsh environments. The choice of materials and coatings plays a crucial role in ensuring the coupling’s durability and performance under challenging conditions.

Corrosion-Resistant Materials:

In corrosive environments, it is essential to use materials that can withstand chemical attacks and oxidation. Stainless steel, specifically grades like 316 or 17-4 PH, is commonly chosen for flexible couplings in such situations. Stainless steel offers excellent corrosion resistance, making it suitable for applications where the coupling may come into contact with corrosive substances or moisture.

Special Coatings:

For certain harsh environments, coupling manufacturers may apply special coatings to enhance the coupling’s corrosion resistance. Examples of coatings include zinc plating, nickel plating, or epoxy coatings. These coatings provide an additional layer of protection against corrosive agents and help extend the coupling’s lifespan.

Sealed Designs:

In environments where the coupling is exposed to contaminants like dust, dirt, or moisture, sealed designs are preferred. Sealed flexible couplings prevent these substances from entering the coupling’s internal components, thus reducing the risk of corrosion and wear. The sealed design also helps to maintain the coupling’s performance over time in challenging conditions.

High-Temperature Applications:

For harsh environments with high temperatures, flexible couplings made from high-temperature resistant materials, such as certain heat-resistant stainless steels or superalloys, can be used. These materials retain their mechanical properties and corrosion resistance even at elevated temperatures.

Chemical Resistance:

For applications where the coupling might encounter chemicals or solvents, it is essential to select a coupling material that is chemically resistant. This prevents degradation and ensures the coupling’s integrity in such environments.

Specialized Designs:

In some cases, where the environment is exceptionally harsh or unique, custom-designed flexible couplings may be necessary. Engineering a coupling to meet the specific demands of the environment ensures optimal performance and reliability.

Consultation with Manufacturers:

When considering flexible couplings for corrosive or harsh environments, it is advisable to consult with coupling manufacturers or engineering experts. They can provide valuable insights and recommend suitable materials, coatings, and designs based on the specific operating conditions.

Summary:

Flexible couplings can indeed be used in corrosive or harsh environments, provided the appropriate materials, coatings, and designs are chosen. Stainless steel, sealed designs, and special coatings are some of the solutions that enhance the coupling’s corrosion resistance and performance. It is essential to consider the specific environment and application requirements when selecting a flexible coupling to ensure optimal functionality and durability in challenging conditions.

China Professional Flexible Universal Range Coupling Flange Adaptor ISO9001 Pipe Fitting  China Professional Flexible Universal Range Coupling Flange Adaptor ISO9001 Pipe Fitting
editor by CX 2024-05-16

China best Customized Flexible Diaphragm Coupling, Coupling with Diaphragm

Product Description

Densen customized flexible diaphragm coupling,coupling with diaphragm,diaphragm coupling

Product Name Densen customized flexible diaphragm coupling,coupling with diaphragm,diaphragm coupling
DN mm 11~180mm
Axis Angle 1°00/1°30
Rated Torque 10~25000 N·m
Allowable speed 5000~350N·m
Material 35CrMo/HT200/ZG270
Application Widely used in metallurgy, mining, engineering and other fields.

Why Choose Us

1. One stop service:
We have 5 own factories and 50+ sub-contractors located in different areas of China to offer you one-stop manufacturing and purchasing services to help you save time and reduce procurement cost.

2. Your eyes in China:

Our commitment to quality permeates from quoting, scheduling, production, inspection to deliver into your warehouse, our QC team will remark the errors if has on QC documents for your checking before delivery as your 3rd party.

3. Your R&Dconsultant:
With professional engineers team and 29 years manufacture experience ,we would help you work out problems during new parts’ development, optimize design and recommend the most cost-effective solution.

4. Your Emergency Solver:
With continued grown factories team and our QC teams located in different areas, if customers need to expedite the delivery, we would be able to adopt another factory to produce together immediately.

5. Quality Guaranty:
No matter how long time the products delivered, we are responsible for the quality. In case the products be rejected, we would replace them or return fund according to your demand without hesitation

FAQQ1. Are you a manufacturer or a trader?

Manufacture, we have 5 own foundries, 4 in ZheJiang Province, 1 in ZHangZhoug Province

Q2. Do you have MOQ request?

1 pcs per order is ok with us , unless material is seldom used.

Q3. If I only have a sample,without drawings, can you quote then manufacture for me?

Just send us the sample, we would have the sample simulated and measured by professional equipment then issue formal drawings for
you , at the same time, we could help you optimize the design according to your demand and related processes’ feasibility.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the cost implications of using flexible couplings compared to other coupling types?

When considering the cost implications of using flexible couplings compared to other coupling types, several factors come into play. While flexible couplings may have a higher upfront cost in some cases, they often offer cost savings in the long run due to their advantages and reduced maintenance requirements.

  • Upfront Cost: In terms of upfront cost, flexible couplings can vary depending on the design, material, and size. Some high-performance flexible couplings with specialized features may have a higher initial cost than simpler coupling types. For instance, certain specialized couplings used in demanding applications like high-speed precision machinery or corrosive environments might be more expensive.
  • Maintenance Costs: Flexible couplings generally have lower maintenance costs compared to certain rigid coupling types. Rigid couplings, such as gear couplings or disc couplings, may require periodic maintenance to check for wear, lubrication, and alignment. In contrast, many flexible couplings, especially those with elastomeric elements, are self-lubricating and require little to no maintenance.
  • Reduced Downtime: Due to their ability to accommodate misalignments and dampen vibrations, flexible couplings can reduce the wear and tear on connected equipment. This reduction in wear can lead to less frequent downtime for repairs or replacements, resulting in improved productivity and cost savings.
  • Longevity: Flexible couplings are designed to absorb shocks and vibrations, which can extend the lifespan of connected equipment. By minimizing stress and wear on components, flexible couplings contribute to the longevity of machinery and reduce the need for premature replacements.
  • Energy Efficiency: Some flexible couplings, such as beam couplings or certain elastomeric couplings, have low mass and inertia, contributing to better energy efficiency in rotating systems. By reducing energy losses, these couplings can result in cost savings over time.
  • Application Specificity: In some cases, specialized coupling types might be necessary to meet specific application requirements. While these specialized couplings may have higher costs, they are designed to optimize performance and reliability in those specific scenarios.
  • Compatibility and Adaptability: Flexible couplings are often more versatile in terms of accommodating shaft misalignment and different shaft sizes. Their adaptability can reduce the need for custom-made or precisely machined components, potentially saving costs in certain installations.

Overall, the cost implications of using flexible couplings compared to other coupling types depend on the specific application and its requirements. While they may have a higher initial cost in some cases, the long-term benefits, such as reduced maintenance, increased equipment longevity, and improved system efficiency, often justify the investment in flexible couplings.

flexible coupling

What are the differences between single and double flexible coupling designs?

Single and double flexible couplings are two common designs used for power transmission in various mechanical systems. Here are the main differences between the two:

  • Design: The primary difference lies in their configuration. A single flexible coupling consists of one flexible element connecting two shafts, while a double flexible coupling, also known as a two-piece flexible coupling, uses two flexible elements with an intermediate shaft in between. The double flexible coupling resembles two single couplings connected in series.
  • Torsional Flexibility: Single flexible couplings typically provide greater torsional flexibility than double flexible couplings. The presence of an intermediate shaft in the double coupling design adds some rigidity and reduces the overall torsional flexibility of the system.
  • Compensation of Misalignment: Both single and double flexible couplings can compensate for angular and parallel misalignment between shafts. However, due to its additional flexible element, the double flexible coupling may have slightly better misalignment compensation capabilities.
  • Length and Space: Single flexible couplings are generally shorter in length compared to double flexible couplings. The double flexible coupling’s design requires additional space to accommodate the intermediate shaft, making it longer than the single coupling.
  • Shaft Separation: Single flexible couplings connect the two shafts directly without any intermediate components, while the double flexible coupling separates the shafts using an intermediate shaft. This shaft separation in the double design can be advantageous in certain applications.
  • Stiffness: The double flexible coupling tends to be slightly stiffer than the single flexible coupling due to the presence of the intermediate shaft, which may affect its ability to absorb vibrations and shock loads.
  • Application: Single flexible couplings are commonly used in various applications, including pumps, compressors, fans, and general power transmission systems. Double flexible couplings are often preferred in applications where a higher level of torsional stiffness is required, such as certain industrial machinery.

Both single and double flexible coupling designs have their advantages and are suitable for different types of machinery and power transmission requirements. The choice between the two depends on factors such as the specific application, the level of misalignment compensation needed, the available space, and the desired torsional flexibility for the system.

flexible coupling

What materials are commonly used in manufacturing flexible couplings?

Flexible couplings are manufactured using a variety of materials, each offering different properties and characteristics suited for specific applications. The choice of material depends on factors such as the application’s requirements, environmental conditions, torque capacity, and desired flexibility. Here are some of the commonly used materials in manufacturing flexible couplings:

  • Steel: Steel is a widely used material in flexible couplings due to its strength, durability, and excellent torque transmission capabilities. Steel couplings are suitable for heavy-duty industrial applications with high torque requirements and harsh operating conditions.
  • Stainless Steel: Stainless steel is often used to manufacture flexible couplings in environments with high corrosion potential. Stainless steel couplings offer excellent resistance to rust and other corrosive elements, making them ideal for marine, food processing, and chemical industry applications.
  • Aluminum: Aluminum couplings are lightweight, have low inertia, and provide excellent balance. They are commonly used in applications where reducing weight is critical, such as aerospace and robotics.
  • Brass: Brass couplings are known for their electrical conductivity and are used in applications where electrical grounding or electrical isolation is required, such as in certain industrial machinery or electronics equipment.
  • Cast Iron: Cast iron couplings offer good strength and durability and are often used in industrial applications where resistance to shock loads and vibrations is necessary.
  • Plastic/Polymer: Some flexible couplings use high-performance polymers or plastics, such as polyurethane or nylon. These materials provide good flexibility, low friction, and resistance to chemicals. Plastic couplings are suitable for applications where corrosion resistance and lightweight are essential.
  • Elastomers: Elastomers are used as the flexible elements in many flexible couplings. Materials like natural rubber, neoprene, or urethane are commonly used as elastomer spider elements, providing flexibility and vibration damping properties.

The selection of the coupling material depends on the specific needs of the application. For instance, high-performance and heavy-duty applications may require steel or stainless steel couplings for their robustness, while applications where weight reduction is crucial may benefit from aluminum or polymer couplings. Additionally, the choice of material is influenced by factors such as temperature range, chemical exposure, and electrical requirements in the application’s operating environment.

Manufacturers typically provide material specifications for their couplings, helping users make informed decisions based on the specific demands of their applications.

China best Customized Flexible Diaphragm Coupling, Coupling with Diaphragm  China best Customized Flexible Diaphragm Coupling, Coupling with Diaphragm
editor by CX 2024-05-15