China Good quality Gfc-80X114 Manufacturer Flexible Clamp Style Shaft Spider Gear Motor Jaw Coupling

Product Description

GFC-80X114 Manufacturer Flexible Clamp Style GFC Shaft Spider Gear Motor Jaw Coupling

 

GFC-80X114 Manufacturer Flexible Clamp Style GFC Shaft Spider Gear Motor Jaw Coupling

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GFC-14X22 3,4,5,6,6.35 14 22 14.3 6.6 5.0 M2.5 1.0
GFC-20×25 3,4,5,6,6.35,7,8,9,9.525,10 20 25 16.7 8.6 5.9 M3 1.5
GFC-20X30 3,4,5,6,6.35,7,8,9,9.525,10 20 30 19.25 8.6 5.9 M3 1.5
GFC-25X30 4,5,6,6.35,7,8,9,9.525,10,11,12 25 30 20.82 11.6 8.5 M4 2.5
GFC-25X34 4,5,6,6.35,7,8,9,9.525,10,11,12 25 34 22.82 11.6 8.5 M4 2.5
GFC-30×35 5,6,6.35,7,8,9,10,11,12,12.7,14,15,16 30 35 23 11.5 10 M4 2.5
GFC-30X40 5,6,6.35,7,8,9,10,11,12,12.7,14,15,16 30 40 25 11.5 10 M4 2.5
GFC-40X50 6,8,9,10,11,12,12.7,14,15,16,17,18,19,20,22,24 40 50 32.1 14.5 14 M5 7
GFC-40X55 6,8,9,10,11,12,12.7,14,15,16,17,18,19,20,22,24 40 55 34.5 14.5 14 M5 7
GFC-40X66 6,8,910,11,12,12.7,14,15,16,17,18,19,20,22,24 40 66 40 14.5 14 M5 7
GFC-55X49 10,11,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 49 32 16.1 13.5 M6 12
GFC-55X78 8,10,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 78 46.4 16.1 19 M6 12
GFC-65X80 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38,40 65 80 48.5 17.3 14 M8 20
GFC-65X90 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38,40 65 90 53.5 17.3 22.5 M8 20
GFC-80X114 19,20,22,24,25,28,30,32,35,38,40,42,45 80 114 68 22.5 16 M8 20
GFC-95X126 19,20,22,24,25,28,30,32,35,38,40,42,45,50,55 95 126 74.5 24 18 M10 30

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GFC-14X22 5.0 0.1 1 ±02 10000 50 1.0×10-6 High strength aluminum alloy Polyurethane imported from Germany Anodizing treatment 10
GFC-20X25 5.0 0.1 1 ±02 10000 50 1.0×10-6 15
GFC-20X30 5.0 0.1 1 ^02 10000 53 1.1×10-6 19
GFC-25X30 10 0.1 1   10000 90 5.2X10-6 33
GFC-25X34 10 0.1 1 £)2 10000 90 5.2×10-6 42
GFC-30X35 12.5 0.1 1 ±02 10000 123 6.2×10-6 50
GFC-30×40 12.5 0.1 1 102 10000 123 6.2×10-6 60
GFC-40X50 17 0.1 1   8000 1100 3.8×10-5 115
GFC-40X55 17 0.1 1 ±02 8000 1100 3.8×10-5 127
GFC-40X66 17 0.1 1   7000 1140 3.9×10-5 154
GFC-55X49 45 0.1 1 ±02 6500 2350 1.6×10-3 241
GFC-55X78 45 0.1 1 102 6000 2500 1.6×10-3 341
GFC-65X80 108 0.1 1 ±02 5500 4500 3.8×10-3 433
GFC-65X90 108 0.1 1 ±02 5500 4800 3.8×10-3 583
GFC-80X114 145 0.1 1 £)2 4500 5000 1.8×10-3 1650
GFC-95X126 250 0.1 1 ±02 4000 5000 2.0×10-3 1000

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible gear coupling

Materials Used in Manufacturing Flexible Gear Couplings and Their Impact on Performance

Flexible gear couplings are designed to transmit torque while accommodating misalignments and reducing vibrations. The choice of materials for manufacturing these couplings plays a crucial role in their overall performance and suitability for specific applications. Some common materials used in flexible gear couplings include:

  • Steel: Steel is a popular material for flexible gear couplings due to its high strength and durability. It can handle substantial torque loads and provides good resistance to wear and fatigue. Steel couplings are commonly used in heavy-duty applications, such as steel mills, mining, and power generation.
  • Stainless Steel: Stainless steel is used when corrosion resistance is required, making it suitable for applications in corrosive environments like the marine, chemical, and petrochemical industries.
  • Alloy Steel: Alloy steel is used to improve specific properties, such as hardness and heat resistance. It is often employed in high-temperature applications found in steel processing and power generation.
  • Cast Iron: Cast iron is known for its excellent wear resistance and damping capabilities. It is used in applications where shock absorption and vibration reduction are critical, such as pumps and compressors.
  • Aluminum: Aluminum is lightweight and offers good corrosion resistance, making it suitable for applications where weight reduction is important, such as aerospace and certain industrial machinery.
  • Bronze: Bronze is used for its self-lubricating properties and resistance to wear. It is often found in couplings used in low-speed applications, such as conveyor systems.
  • Nylon and Plastics: Nylon and other plastics are used in some couplings where electrical isolation and lightweight properties are essential, such as in medical equipment and certain automation systems.

The selection of materials depends on the specific requirements of the application, including torque, speed, temperature, environmental conditions, and the presence of corrosive substances. Proper material selection ensures that the flexible gear coupling can operate efficiently and reliably, providing optimal performance and minimizing maintenance needs.

flexible gear coupling

Enhanced Performance of Flexible Gear Couplings through Gear Teeth Flexibility

The flexibility of gear teeth in flexible gear couplings plays a crucial role in enhancing their overall performance. This flexibility allows the coupling to compensate for misalignments and absorb shocks and vibrations, providing several key benefits:

  • Misalignment Compensation: As the machinery operates, shafts may experience angular, parallel, or axial misalignments due to various factors like thermal expansion, foundation settlement, or manufacturing tolerances. The flexible gear teeth in the coupling can accommodate these misalignments by slight bending or elastic deformation, ensuring the smooth transmission of torque between the shafts despite their misaligned positions.
  • Vibration Damping: During operation, rotating equipment can generate vibrations caused by uneven loads, resonance, or other factors. The flexible gear teeth act as shock absorbers, dampening these vibrations and preventing them from propagating throughout the system. This helps reduce noise, wear, and stress on the machinery components, contributing to smoother and quieter operation.
  • Load Distribution: The flexibility of the gear teeth allows the coupling to distribute the transmitted load evenly across the entire tooth surface. This even load distribution reduces wear and fatigue on the gear teeth, increasing the coupling’s overall lifespan and reliability.
  • Overload Protection: In case of sudden shock loads or overloads, the flexible gear teeth can absorb part of the impact, protecting the connected equipment from damage. This feature is especially important in applications with variable loads or potential shock events.
  • Torsional Flexibility: The gear teeth’s flexibility enables the coupling to handle torsional movements, ensuring that torque is smoothly transferred between the shafts even if they are not perfectly aligned. This feature helps maintain constant velocity transmission, critical in precision systems.

Overall, the flexibility of gear teeth in flexible gear couplings allows these couplings to adapt to changing conditions, provide protection against unexpected forces, and improve the performance and reliability of mechanical power transmission systems.

flexible gear coupling

Advantages of Flexible Gear Couplings

Flexible gear couplings offer several advantages over other types of couplings:

  1. Misalignment Compensation: Flexible gear couplings can accommodate angular, parallel, and axial misalignments between the connected shafts. This ability to compensate for misalignment reduces stress on the machinery, shafts, and bearings, leading to improved overall system reliability and reduced maintenance requirements.
  2. Vibration Damping: The elastomeric flexible element in the coupling acts as a damping mechanism, absorbing vibrations and shocks during operation. This feature helps in reducing noise levels and protecting the connected equipment from damage caused by excessive vibrations.
  3. High Torque Transmission: Flexible gear couplings are designed to handle high torque loads, making them suitable for heavy-duty applications in various industries.
  4. Compact Design: Compared to some other types of couplings, flexible gear couplings have a relatively compact design, making them suitable for applications with space constraints.
  5. Easy Installation and Maintenance: The simple design and flexible nature of these couplings make them easy to install and maintain, minimizing downtime and associated costs.
  6. Reliability: Flexible gear couplings are known for their reliability and long service life, ensuring uninterrupted power transmission in critical industrial processes.
  7. Torsional Flexibility: The elastomeric material used in the coupling provides high torsional flexibility, enabling smooth torque transmission even in applications with varying loads and speeds.

Overall, the advantages of flexible gear couplings make them a popular choice for power transmission systems in various industries, including mining, steel, paper, and chemical processing, where the demands for performance, reliability, and durability are essential.

China Good quality Gfc-80X114 Manufacturer Flexible Clamp Style Shaft Spider Gear Motor Jaw Coupling  China Good quality Gfc-80X114 Manufacturer Flexible Clamp Style Shaft Spider Gear Motor Jaw Coupling
editor by CX 2024-03-08